Skip to main content
Log in

Horseradish peroxidase-encapsulated chitosan nanoparticles for enzyme-prodrug cancer therapy

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Among various enzyme-based therapies, enzyme-prodrug therapy (EPT) promises minimized side effects in that it activates non-toxic prodrugs locally where the enzymes are placed. The success of such an approach requires high enzyme stability against both structural denaturation and potential immunogenicity. This work examines the efficiency of nanoparticles for enzyme protection in EPT applications. Specifically, horseradish peroxidase (HRP)-encapsulated chitosan nanoparticles (HRP-CSNP) were constructed and examined with respect to stability enhancement. HRP-CSNP retained enzyme activity and had improved stability at 37 °C in the presence of a denaturant, urea. The nanoparticles effectively bound to the surface of human breast cancer cell Bcap37 and led to over 80 % cell death when applied with a prodrug indole-3-acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amidi M, Mastrobattista E, Jiskoot W, Hennink WE (2010) Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 62:59–82

    Article  CAS  PubMed  Google Scholar 

  • Andrady C, Sharma SK, Chester KA (2011) Antibody-enzyme fusion proteins for cancer therapy. Immunotherapy 3:193–211

    Article  CAS  PubMed  Google Scholar 

  • Arya G, Vandana M, Acharya S, Sahoo SK (2011) Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomed Nanotechnol Biol Med 7:859–870

    Article  CAS  Google Scholar 

  • Bagshawe KD (2006) Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Expert Rev Anticancer Ther 6:1421–1431

    Article  CAS  PubMed  Google Scholar 

  • Baier G, Costa C, Zeller A et al (2011) BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci 11:628–638

    Article  CAS  PubMed  Google Scholar 

  • Bindhu LV, Abraham ET (2003) Immobilization of horseradish peroxidase on chitosan for use in nonaqueous media. J Appl Polym Sci 88:1456–1464

    Article  CAS  Google Scholar 

  • Chang FP, Hung Y, Chang JH et al (2014) Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis. ACS Appl Mater Interfaces 6:6883–6890

    Article  CAS  PubMed  Google Scholar 

  • Chen MC, Mi FL, Liao ZX et al (2013) Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 65:865–879

    Article  CAS  PubMed  Google Scholar 

  • De Bont DB, Leenders RG, Haisma HJ et al (1997) Synthesis and biological activity of beta-glucuronyl carbamate-based prodrugs of paclitaxel as potential candidates for ADEPT. Bioorg Med Chem 5:405–414

    Article  PubMed  Google Scholar 

  • Dziubla TD, Karim A, Muzykantov VR (2005) Polymer nanocarriers protecting active enzyme cargo against proteolysis. J Control Release 102:427–439

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B 90:21–27

    Article  CAS  Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Article  Google Scholar 

  • Greco O, Dachs GU, Tozer GM, Kanthou C (2002) Mechanisms of cytotoxicity induced by horseradish peroxidase/indole-3-acetic acid gene therapy. J Cell Biochem 87:221–232

    Article  CAS  PubMed  Google Scholar 

  • Hoemann CD, Guzmán-Morales J, Tran-Khanh N et al (2013) Chitosan rate of uptake in HEK293 cells is influenced by soluble versus microparticle state and enhanced by serum-induced cell metabolism and lactate-based media acidification. Molecules 18:1015–1035

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Ma Z, Khor E, Lim LY (2002) Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 19:1488–1494

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Khor E, Lim LY (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21:344–353

    Article  CAS  PubMed  Google Scholar 

  • Huysmans G, Ranquin A, Wyns L et al (2005) Encapsulation of therapeutic nucleoside hydrolase in functionalised nanocapsules. J Cont Rel 102:171–179

    Article  CAS  Google Scholar 

  • Jarudilokkul S, Tongthammachat A, Boonamnuayvittaya V (2011) Preparation of chitosan nanoparticles for encapsulation and release of protein. Korean J Chem Eng 28:1247–1251

    Article  CAS  Google Scholar 

  • Karimi B, Emadi S, Safari AA, Kermanian M (2013) Immobilization, stability and enzymatic activity of albumin and trypsin adsorbed onto nanostructured mesoporous SBA-15 with compatible pore sizes. RSC Adv 4:4387–4394

    Article  Google Scholar 

  • Katas H, Raja MAG, Lam KL (2013) Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. Int J Biomater 2013:146320

    Article  PubMed Central  PubMed  Google Scholar 

  • Kralj S, Rojnik M, Romih R et al (2012) Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles. J Nanopart Res 14:1–14

    Article  Google Scholar 

  • Kumar R, Maitra AN, Patanjali PK, Sharma P (2005) Hollow gold nanoparticles encapsulating horseradish peroxidase. Biomaterials 26:6743–6753

    Article  CAS  PubMed  Google Scholar 

  • Nafee N, Schneider M, Schaefer UF, Lehr CM (2009) Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm 381:130–139

    Article  CAS  PubMed  Google Scholar 

  • Ortac I, Simberg D, Yeh YS et al (2014) Dual-porosity hollow nanoparticles for the immunoprotection and delivery of non-human enzymes. Nano Lett. doi:10.1021/nl404360k

    PubMed  Google Scholar 

  • Patel PC, Giljohann DA, Daniel WL et al (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piras AM, Maisetta G, Sandreschi S et al (2014) Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. Int J Biol Macromol 67:124–131

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Bagshawe KD, Melton RG, Sherwood RF (1992) Human immune response to monoclonal antibody-enzyme conjugates in ADEPT pilot clinical trial. Cell Biophys 21:109–120

    Article  CAS  PubMed  Google Scholar 

  • Shin EH, Li Y, Kumar U et al (2013) Membrane potential mediates the cellular binding of nanoparticles. Nanoscale 5:5879–5886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vellard M (2003) The enzyme as drug: application of enzymes as pharmaceuticals. Curr Opin Biotechnol 14:444–450

    Article  CAS  PubMed  Google Scholar 

  • Vertegel AA, Reukov V, Maximov V (2011) Enzyme-nanoparticle conjugates for biomedical applications. Methods Mol Biol 679:165–182

    Article  CAS  PubMed  Google Scholar 

  • Wardman P (2002) Indole-3-acetic acids and horseradish peroxidase: a new prodrug/enzyme combination for targeted cancer therapy. Curr Pharm Des 8:1363–1374

    Article  CAS  PubMed  Google Scholar 

  • Yue ZG, Wei W, Lv PP et al (2011) Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12:2440–2446

    Article  CAS  PubMed  Google Scholar 

  • Zhao LM, Shi LE, Zhang ZL et al (2011) Preparation and application of chitosan nanoparticles and nanofibers. Braz J Chem Eng 28:353–362

    CAS  Google Scholar 

  • Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151:458–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zubareva A, Ily’ina A, Prokhorov A et al (2013) Characterization of protein and peptide binding to nanogels formed by differently charged chitosan derivatives. Mol Basel Switz 18:7848–7864

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by seed grant for cultivating and interdisciplinary research of Chinese Education Ministry, National Natural Science Foundation of China (21303050), China Postdoctoral Science Foundation Grant (2013M540341), and National “Thousand Talents Program” of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Chen, C., Yu, H. et al. Horseradish peroxidase-encapsulated chitosan nanoparticles for enzyme-prodrug cancer therapy. Biotechnol Lett 37, 81–88 (2015). https://doi.org/10.1007/s10529-014-1664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1664-5

Keywords

Navigation