Biotechnology Letters

, Volume 37, Issue 1, pp 9–18 | Cite as

Biocatalysis and biotransformation of resveratrol in microorganisms

  • Yan-Zhen Mei
  • Ruo-Xue Liu
  • Dong-Peng Wang
  • Xia Wang
  • Chuan-Chao DaiEmail author


Resveratrol, a major stilbene phytoalexin, is a valuable polyphenol that has been recognized for its benefits to human health. Resveratrol has antioxidant and antitumor effects and promotes longevity. It is used in medicine, health care products, cosmetics, and other industries. Therefore, a sustainable source for resveratrol production is required. This review describes the metabolic engineering of microorganisms, the biotransformation and biosynthesis of endophytes and the oxidation or degradation of resveratrol. We compare various available methods for resveratrol production, and summarize the practical challenges facing the microbial production of resveratrol. The future research direction for resveratrol is also discussed.


Biotransformation 4-Coumarate:coenzyme A ligase Metabolic engineering Resveratrol Stilbene synthase 



Thanks for financial supports from the National Natural Science Foundation of China (Project No. 41306139); the National Science Foundation for Talents Training in Basic Science, China (J1103507); a PhD Programs Foundation of Ministry of Education of China (Grant No. 20133207120001), the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. Ajikumar PK, Xiao WH, Tyo KE et al (2010) Escherichia coli in isoprenoid pathway optimization for taxol precursor overproduction. Science 330:70–74PubMedCentralPubMedCrossRefGoogle Scholar
  2. Almagro L, Belchí-Navarro S, Sabater-Jara AB et al (2013) Bioproduction of trans-resveratrol from grapevine cell cultures. In: Ramawat KG, Merillon JM (eds) Natural products. Springer, BerlinGoogle Scholar
  3. Aly AH, Debbab A, Kjer J et al (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16CrossRefGoogle Scholar
  4. Bai T, Dong DS, Pei L (2014) Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer. Oncol Rep 31:2293–2297PubMedGoogle Scholar
  5. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506PubMedCrossRefGoogle Scholar
  6. Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342PubMedCrossRefGoogle Scholar
  7. Becker JVW, Armstrong GO, Merwe MJ et al (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85PubMedCrossRefGoogle Scholar
  8. Beekwilder J, Wolswinkel R, Jonker H et al (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672PubMedCentralPubMedCrossRefGoogle Scholar
  9. Berrougui H, Grenier G, Loued S et al (2009) A new insight into resveratrol as an atheroprotective compound: inhibition of lipid peroxidation and enhancement of cholesterol efflux. Atherosclerosis 207:420–427PubMedCrossRefGoogle Scholar
  10. Bradamante S, Barenghi L, Villa A (2004) Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22:169–188PubMedCrossRefGoogle Scholar
  11. Brefort T, Scherzinger D, Limón MC et al (2011) Cleavage of resveratrol in fungi: characterization of the enzyme Rco1 from Ustilago maydis. Fungal Genet Biol 48:132–143PubMedCrossRefGoogle Scholar
  12. Breuil A, Adrian M, Pirio N et al (1998) Metabolism of stilbene phytoalexins by Botrytis cinerea: 1. Characterization of a resveratrol dehydrodimer. Tetrahedron Lett 39:537–540CrossRefGoogle Scholar
  13. Bru R, Sellés S, Casado-Vela J et al (2006) Modified cyclodextrins are chemically defined glucan inducers of defense responses in grapevine cell cultures. J Agric Food Chem 54:65–71PubMedCrossRefGoogle Scholar
  14. Chen M, Li D, Gao Z et al (2014) Enzymatic transformation of polydatin to resveratrol by piceid-β-d-glucosidase from Aspergillus oryzae. Bioprocess Biosyst Eng 37(7):1411–1416PubMedCrossRefGoogle Scholar
  15. Choi O, Wu CZ, Kang SY et al (2011) Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind Microbiol Biotechnol 38:1657–1665PubMedCrossRefGoogle Scholar
  16. Cichewicz RH, Kouzi SA, Hamann MT (2000) Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea. J Nat Prod 63:29–33PubMedCrossRefGoogle Scholar
  17. De La Lastra CA, Villegas I (2005) Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res 49:405–430PubMedCrossRefGoogle Scholar
  18. Donnez D, Jeandet P, Clement C et al (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27:706–713PubMedCrossRefGoogle Scholar
  19. Dubrovina AS, Kiselev KV (2012) Effect of long-term cultivation on resveratrol accumulation in a high-producing cell culture of Vitis amurensis. Acta Physiol Plant 34:1101–1106CrossRefGoogle Scholar
  20. Fernández-Mara MI, Mateosb R, García-Parrillac MC et al (2012) Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: a review. Food Chem 130:797–813CrossRefGoogle Scholar
  21. Ferrer JL, Austin MB, Stewart Jr C et al (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370 Fluxome® Resveratrol Affirmed GRAS.
  22. Hasan MM, Cha M, Bajpai VK et al (2013) Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review. Rev Environ Sci Biotechnol 12:209–221CrossRefGoogle Scholar
  23. Holthoff JH, Woodling KA, Doerge DR et al (2010) Resveratrol, a dietary polyphenolic phytoalexin, is a functional scavenger of peroxynitrite. Biochem Pharmacol 80:1260–1265PubMedCentralPubMedCrossRefGoogle Scholar
  24. Huang KS, Lin M, Yu LN et al (2000) Four novel oligostilbenes from the roots of Vitis amurensis. Tetrahedron 56:1321–1329CrossRefGoogle Scholar
  25. Jang M, Cai L, Udeani GO, Slowing KV et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220PubMedCrossRefGoogle Scholar
  26. Jansen F, Gillessen B, Mueller F et al (2014) Metabolic engineering for p-coumaryl alcohol production in Escherichia coli by introducing an artificial phenylpropanoid pathway. Biotechnol Appl Biochem. doi: 10.1002/bab.1222 PubMedGoogle Scholar
  27. Jin S, Luo M, Wang W et al (2013) Biotransformation of polydatin to resveratrol in Polygonum cuspidatum roots by highly immobilized edible Aspergillus niger and Yeast. Bioresour Technol 136:766–770PubMedCrossRefGoogle Scholar
  28. Kaeberlein M, Rabinovitch PS (2006) Medicine: grapes versus gluttony. Nature 444:280–281PubMedCrossRefGoogle Scholar
  29. Katsuyama Y, Funa N, Horinouchi S (2007a) Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli. Biotechnol J 2:1286–1293PubMedCrossRefGoogle Scholar
  30. Katsuyama Y, Funa N, Miyahisa I et al (2007b) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem Biol 14:613–621PubMedCrossRefGoogle Scholar
  31. Koopman F, Beekwilder J, Crimi B et al (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11:155–170CrossRefGoogle Scholar
  32. Lançon A, Kaminski J, Tili E et al (2012) Control of microRNA expression as a new way for resveratrol to deliver its beneficial effects. J Agric Food Chem 60:8783–8789PubMedCrossRefGoogle Scholar
  33. Lim CG, Fowler ZL, Hueller T et al (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460PubMedCentralPubMedCrossRefGoogle Scholar
  34. Limem I, Guedon E, Hehn A et al (2008) Production of phenylpropanoid compounds by recombinant microorganisms expressing plant-specific biosynthesis genes. Process Biochem 43:463–479CrossRefGoogle Scholar
  35. Lorenz P, Roychowdhury S, Engelmann M et al (2003) Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9:64–76PubMedCrossRefGoogle Scholar
  36. Lou J, Fu L, Peng Y et al (2013) Metabolites from Alternaria fungi and their bioactivities. Molecules 18:5891–5935PubMedCrossRefGoogle Scholar
  37. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178PubMedCrossRefGoogle Scholar
  38. Martin VJ, Pitera DJ, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802PubMedCrossRefGoogle Scholar
  39. Mikulski D, Górniak R, Molski M (2010) A theoretical study of the structure-radical scavenging activity of trans-resveratrol analogues and cis-resveratrol in gas phase and water environment. Eur J Med Chem 45:1015–1027PubMedCrossRefGoogle Scholar
  40. Nicotra S, Cramarossa MR, Mucci A et al (2004) Biotransformation of resveratrol: synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahedron 60:595–600CrossRefGoogle Scholar
  41. Nonomura S, Kanagawa H, Makimoto A (1963) Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-J O-Kon. (Polygonum cuspidatum Sieb. Et Zucc.). Yakugaku Zasshi 83:988–990PubMedGoogle Scholar
  42. Nopo-Olazabal C, Hubstenberger J, Nopo-Olazabal L et al (2013) Antioxidant activity of selected stilbenoids and their bioproduction in hairy root cultures of muscadine grape (Vitis rotundifolia Michx.). J Agric Food Chem 61:11744–11758PubMedCrossRefGoogle Scholar
  43. Okawara M, Katsuki H, Kurimoto E et al (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560PubMedCrossRefGoogle Scholar
  44. Pangeni R, Sahni JK, Ali J et al (2014) Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin Drug Deliv 11:1285–1298PubMedCrossRefGoogle Scholar
  45. Park SJ, Ahmad F, Philp A et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433PubMedCentralPubMedCrossRefGoogle Scholar
  46. Pezet R (1998) Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers.:Fr. FEMS Microbiol Lett 167:203–208CrossRefGoogle Scholar
  47. Pinto Mdel C, García-Barrado JA, Macías P (2003) Oxidation of resveratrol catalyzed by soybean lipoxygenase. J Agric Food Chem 51:1653–1657PubMedCrossRefGoogle Scholar
  48. Ponzoni C, Beneventi E, Cramarossa MR et al (2007) Laccase-catalyzed dimerization of hydroxystilbenes. Adv Synth Catal 349:1497–1506CrossRefGoogle Scholar
  49. Ren CG, Dai CC (2013) Nitric oxide and brassinosteroids mediated fungal endophyte-induced volatile oil production through protein phosphorylation pathways in Atractylodes lancea plantlets. J Integr Plant Biol 55:1136–1146PubMedCrossRefGoogle Scholar
  50. Rosler J, Krekel F, Amrhein N et al (1997) Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol 113:175–179PubMedCentralPubMedCrossRefGoogle Scholar
  51. Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedCrossRefGoogle Scholar
  52. Saraswati SV, Thomas NF, Weber JF (2012) Strategies and methods for the syntheses of natural oligomeric stilbenoids and analogues. Curr Org Chem 16:605–662CrossRefGoogle Scholar
  53. Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7:979–990PubMedCrossRefGoogle Scholar
  54. Shi J, Zeng Q, Liu Y et al (2012) Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Appl Microbiol Biotechnol 95:369–379PubMedCrossRefGoogle Scholar
  55. Shin SY, Han NS, Park YC et al (2011) Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes. Enzym Microb Technol 48:48–53CrossRefGoogle Scholar
  56. Solladié G, Pasturel-Jacopé Y, Maignan J (2003) A re-investigation of resveratrol synthesis by Perkins reaction. Application to the synthesis of aryl cinnamic acids. Tetrahedron 59:3315–3321CrossRefGoogle Scholar
  57. Stervbo U, Vang O, Bonnesen C (2007) A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chem 101:449–457CrossRefGoogle Scholar
  58. Sydor T, Schaffer S, Boles E (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 10:3361–3363CrossRefGoogle Scholar
  59. Takaoka MJ (1940) The phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J Fac Sci Hokkaido Imp Univ 3:1–16Google Scholar
  60. Takaya Y, Terashima K, Ito J et al (2005) Biomimic transformation of resveratrol. Tetrahedron 61:10285–10290CrossRefGoogle Scholar
  61. Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62:1784–1803PubMedCrossRefGoogle Scholar
  62. Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 6:355–366CrossRefGoogle Scholar
  63. Wang Y, Yu O (2012) Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. J Biotechnol 157:258–260PubMedCrossRefGoogle Scholar
  64. Wang M, Jin Y, Ho CT (1999) Evaluation of resveratrol derivatives as potential antioxidants and identification of a reaction product of resveratrol and 2,2-diphenyl-1-picryhydrazyl radical. J Agric Food Chem 47:3974–3977PubMedCrossRefGoogle Scholar
  65. Wang H, Guo YX, Dong YS et al (2007) Biotransformation of piceid in Polygonum cuspidatum to resveratrol by Aspergillus oryzae. Appl Microbiol Biotechnol 75:763–768PubMedCrossRefGoogle Scholar
  66. Wang Y, Halls C, Zhang J et al (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463PubMedCrossRefGoogle Scholar
  67. Watts K, Lee P, Schmidt DC (2006) Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 6:1–12CrossRefGoogle Scholar
  68. Whitlock NC, Baek SJ (2012) The anticancer effects of resveratrol: modulation of transcription factors. Nutr Cancer 64:493–502PubMedCentralPubMedCrossRefGoogle Scholar
  69. Wilkens A, Paulsen J, Wray V et al (2010) Structures of two novel trimeric stilbenes obtained by horseradish peroxidase catalyzed biotransformation of resveratrol and (−)-epsilon-viniferin. J Agric Food Chem 58:6754–6761PubMedCrossRefGoogle Scholar
  70. Zhang Y, Li SZ, Li J et al (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031PubMedCrossRefGoogle Scholar
  71. Zhang J, Shi J, Liu Y (2013) Substrates and enzyme activities related to biotransformation of resveratrol from phenylalanine by Alternaria sp. MG1. Appl Microbiol Biotechnol 97:9941–9954PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yan-Zhen Mei
    • 1
  • Ruo-Xue Liu
    • 1
  • Dong-Peng Wang
    • 1
  • Xia Wang
    • 1
  • Chuan-Chao Dai
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life SciencesNanjing Normal UniversityNanjingChina

Personalised recommendations