Skip to main content

Advertisement

Log in

New trends in biotechnological production of rosmarinic acid

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyl lactic acid, is widely distributed in the plant kingdom. Interest in it is growing due to its promising biological activities, including cognitive-enhancing effects and slowing the development of Alzheimer’s disease, cancer chemoprotection or anti-inflammatory activity, among others. In order to meet the increasing demand for this compound, several biotechnological approaches to its production based on plant cell and hairy root cultures have been developed. Empirical strategies are currently being combined with metabolic engineering tools to increase RA production in plant cell platforms in a more rational way. Discussed here are the latest advances in the field, together with recent trends in plant biotechnology, such as the application of single use technology and the use of biosensors in downstream processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barberini S, Savona M, Raffi D, Leonardi M, Pistelli L, Stochmal A, Vainstein A, Pistelli L, Ruffoni B (2013) Molecular cloning of SoHPPR encoding a hydroxyphenylpyruvate reductase, and its expression in cell suspension cultures of Salvia officinalis. Plant Cell Tiss Organ Cult 114:131–138

    Article  CAS  Google Scholar 

  • Bauer N, Kiseljak D, Jelaska S (2009) The effect of yeast extract and methyl jasmonate on rosmarinic acid accumulation in Coleus blumei hairy roots. Biol Plant 53:650–656

    Article  CAS  Google Scholar 

  • Berger A, Meinhard J, Petersen M (2006) Rosmarinic acid synthase is a new member of the superfamily of BAHD acyltransferases. Planta 224:1503–1510

    Article  PubMed  CAS  Google Scholar 

  • Brondani D, Zapp E, Vieira IC, Dupont J, Scheeren CW (2011) Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor. Analyst 136:2495–2505

    Article  PubMed  CAS  Google Scholar 

  • Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32:203–217

    Article  PubMed  CAS  Google Scholar 

  • Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Pedreño MA, Palazon J (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Adv. doi:10.1016/j.biotechadv.2014.03.002

    PubMed  Google Scholar 

  • De-Eknamkul W, Ellis BE (1987) Purification and characterization of tyrosine aminotransferase activities from Anchusa officinalis cell cultures. Arch Biochem Biophys 25:430–438

    Article  Google Scholar 

  • Douce R, Joyard J (1996) Biosynthesis of thylakoid membrane lipids. In: Ort DR, Yocum CF (eds) Advances in photosynthesis, vol 4. Kluwer, Dordrecht, pp 69–101

    Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  PubMed  CAS  Google Scholar 

  • Eberle D, Ullmann P, Werck-Reichhart D, Petersen M (2009) cDNA cloning and functional characterisation of CYP98A14 and NADPH:cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis. Plant Mol Biol 69:239–253

    Article  PubMed  CAS  Google Scholar 

  • Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49

    Article  PubMed  CAS  Google Scholar 

  • Eibl R, Löffelholz C, Eibl D (2011) Single-use bioreactors—an overview. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 33–51

    Chapter  Google Scholar 

  • Eremia SAV, Radu G-L, Litescu S-C (2013) Monitoring of rosmarinic acid accumulation in sage cell cultures using laccase biosensor. Phytochem Anal 24:53–58

    Article  PubMed  CAS  Google Scholar 

  • Fallarini S, Miglio G, Paoletti T, Minassi A, Amoruso A, Bardelli C, Brunelleschi S, Lombardi G (2009) Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br J Pharmacol 157:1072–1084

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fattahi M, Nazerib V, Torras-Claveria L, Sefidkond F, Cusido RM, Zamani Z, Palazon J (2013) A new biotechnological source of rosmarinic acid and surface flavonoids: hairy root cultures of Dracocephalum kotschyi Boiss. Ind Crops Prod 50:256–263

    Article  CAS  Google Scholar 

  • Françoise B, Hossein S, Halimeh H, Zahra NF (2007) Growth optimization of Zataria multiflora Boiss. tissue cultures and rosmarinic acid production improvement. Pak J Biol Sci 10:3395–3399

    Article  PubMed  Google Scholar 

  • Furtado RA, de Araújo FR, Resende FA, Cunha WR, Tavares DC (2010) Protective effect of rosmarinic acid on V79 cells evaluated by the micronucleus and comet assays. J Appl Toxicol 30:254–259

    PubMed  CAS  Google Scholar 

  • Georgiev M, Pavlov A, Ilieva M (2004) Rosmarinic acid production by Lavandula vera MM cell suspension: the effect of temperature. Biotechnol Lett 26:855–856

    Article  PubMed  CAS  Google Scholar 

  • Georgiev M, Kuzeva S, Pavlov A, Kovacheva E, Ilieva M (2006) Enhanced rosmarinic acid production by Lavandula vera MM cell suspension culture through elicitation with vanadyl sulfate. Z Naturforsch C 61:241–244

    PubMed  CAS  Google Scholar 

  • Grzegorczyk I, Krolicka A, Wysokinska H (2006) Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Z Naturforsch C 61:351–356

    PubMed  CAS  Google Scholar 

  • Hakkim FL, Kalyani S, Essa M, Girija S, Song H (2011) Production of rosmarinic in Ocimum sanctum cell cultures by the influence of sucrose, phenylalanine, yeast extract, and methyl jasmonate. Int J Biol Med Res 2:1070–1074

    Google Scholar 

  • Hamaguchi T, Ono K, Murase A, Yamada M (2009) Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol 175:2557–2565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Häusler E, Petersen M, Alfermann AW (1991) Hydroxyphenylpyruvate reductase from cell suspension cultures of Coleus blumei Benth. Z Naturforsch 46:371–376

    Google Scholar 

  • Hippolyte I, Marin B, Baccou JC, Jonard R (1992) Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep 11:109–112

    Article  PubMed  CAS  Google Scholar 

  • Huang LD, Van SJ (2002) Salvia chamelaeagnea can be micropropagated and its callus induced to produce rosmarinic acid. S Afr J Bot 68:177–180

    CAS  Google Scholar 

  • Hücherig S, Petersen M (2013) RNAi suppression and overexpression studies of hydroxyphenylpyruvate reductase (HPPR) and rosmarinic acid synthase (RAS) genes related to rosmarinic acid biosynthesis in hairy root cultures of Coleus blumei. Plant Cell Tiss Organ Cult 113:375–385

    Article  Google Scholar 

  • Hur YG, Suh CH, Kim S, Won J (2007) Rosmarinic acid induces apoptosis of activated T cells from rheumatoid arthritis patients via mitochondrial pathway. J Clin Immunol 27:36–45

    Article  PubMed  CAS  Google Scholar 

  • Hussain M, Fareed S, Ansari S, Rahman M, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioall Sci 4:10–20

    Article  CAS  Google Scholar 

  • Ilieva M, Pavlov A (1997) Rosmarinic acid production by Lavandula vera MM cell-suspension culture. Appl Microbiol Biotechnol 47:683–688

    Article  CAS  Google Scholar 

  • Karam NS, Jawad FM, Arikat NA, Shibli RA (2003) Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tiss Organ Cult 73:117–121

    Article  CAS  Google Scholar 

  • Kim HK, Oh SR, Lee HK, Huh H (2001) Benzothiadiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa O. Kuntze Biotech Lett 23:55–60

    Article  Google Scholar 

  • Kim KH, Janiak V, Petersen M (2004) Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Plant Mol Biol 54:311–332

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Lee BJ, Kim JH, Yu YS, Kim MY, Kim KW (2009) Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21(WAF1) expression. Eur J Pharmacol 615:150–154

    Article  PubMed  CAS  Google Scholar 

  • Kim YB, Kim JK, Uddin MR, Xu H, Park WT, Tuan PA, Li X, Chung E, Lee JH, Park SU (2013) Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS ONE 8:e64199

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kintzios S, Kollias H, Straitouris E, Makri O (2004) Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. Biotechnol Lett 26:521–523

    Article  PubMed  CAS  Google Scholar 

  • Krzyzanowska J, Czubacka A, Pecio L, Przybys M, Doroszewska T, Stochmal A, Oleszek W (2012) The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha × piperita cell suspension cultures. Plant Cell Tiss Organ Cult 108:73–81

    Article  CAS  Google Scholar 

  • Lee SY, Xu H, Kim YK, Park SU (2008) Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J Microbiol Biotechnol 24:969–972

    Article  Google Scholar 

  • Lee SY, Lee CY, Eom SH, Kim YK, Park NI, Park SU (2010) Rosmarinic acid production from transformed root cultures of Nepeta cataria L. Sci Res Essays 5:1122–1126

    Google Scholar 

  • Li W, Koike K, Asada Y, Yoshikawa T, Nikaido T (2005) Rosmarinic acid production by Coleus forskohlii hairy root cultures. Plant Cell Tiss Organ Cult 80:151–155

    Article  CAS  Google Scholar 

  • Li GS, Jiang WL, Tian JW, Qu GW, Zhu HB, Fu FH (2010a) In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. Phytomedicine 17:282–288

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gao MJ, Pan HY, Cui DJ, Gruber MY (2010b) Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves. J Agric Food Chem 58:1639–1645

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, Ma Y, Xu T, Cui B, Liu Y, Guo Z, Yang D (2013) Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza bunge hairy roots. PLoS ONE 8:e72806

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lu X, Hao L, Wang F, Huang C, Wu S (2013) Molecular cloning and overexpression of the tyrosine aminotransferase (TAT) gene leads to increased rosmarinic acid yield in Perilla frutescens. Plant Cell Tiss Org Cult 115:69–83

    Article  CAS  Google Scholar 

  • Maciuk A, Toribio A, Zeches-Hanrot M, Nuzillard JM, Renault JH, Georgiev MI, Ilieva MI (2005) Purification of rosmarinic acid by strong ion-exchange centrifugal partition chromatography. J Liq chromatogr Relat Technol 28:1947–1957

    Article  CAS  Google Scholar 

  • Mallol A, Cusidó RM, Palazón J, Bonfill M, Morales C, Piñol MT (2001) Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57:365–371

    Article  PubMed  CAS  Google Scholar 

  • Martinez BC, Park CH (1993) Characteristics of batch suspension cultures of preconditioned Coleus blumei cells: sucrose effect. Biotechnol Prog 9:97–100

    Article  CAS  Google Scholar 

  • Martinez BC, Park CH (1994) Immobilization of Coleus blumei cells in a column reactor using a spray feeding system. Biotechnol Tech 8:301–306

    Article  CAS  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants–a review. Biotechnol Adv 26:548–560

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Omoto T, Asai I, Shimomura K, Yoshihira K, Ishimaru K (1998) Rosmarinic acid and related phenolics in transformed root cultures of Hyssopus officinalis. Plant Cell Tiss Organ Cult 53:75–78

    Article  CAS  Google Scholar 

  • Ogata A, Tsuruga A, Matsuno M, Mizukami H (2004) Elicitor-induced rosmarinic acid in Lithospermum erythrorhizon cell suspension cultures: activities of rosmarinic acid synthase and the final two cytochrome P450-catalyzed hydroxylations. Plant Biotechnol 21:393–396

    Article  CAS  Google Scholar 

  • Onrubia M, Cusidó RM, Ramirez K, Hernández-Vázquez L, Moyano E, Bonfill M, Palazon J (2013) Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr Med Chem 20:880–891

    PubMed  CAS  Google Scholar 

  • Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W (2010) The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett 192:119–125

    Article  PubMed  CAS  Google Scholar 

  • Panya A, Laguerre M, Lecomte J, Villeneuve P, Weiss J, McClements DJ, Decker EA (2010) Effects of chitosan and rosmarinate esters on the physical and oxidative stability of liposomes. J Agric Food Chem 58:5679–5684

    Article  PubMed  CAS  Google Scholar 

  • Park SU, Uddin MR, Xu H, Kim YK, Lee SY (2008) Biotechnological applications for rosmarinic acid production in plants. Afr J Biotechnol 7:4959–4965

    CAS  Google Scholar 

  • Park DH, Park SJ, Kim JM, Jung WY, Ryu JH (2010) Subchronic administration of rosmarinic acid, a natural prolyl oligopeptidase inhibitor, enhances cognitive performances. Fitoterapia 81:644–648

    Article  PubMed  CAS  Google Scholar 

  • Pavlov AI, Georgiev MI, Ilieva MP (2005a) Production of rosmarinic acid by Lavandula vera MM cell suspension in bioreactor: effect of dissolved oxygen concentration and agitation. World J Microb Biotechnol 21:389–392

    Article  CAS  Google Scholar 

  • Pavlov A, Georgiev M, Panchev I, Ileva M (2005b) Optimization of rosmarinic acid production by Lavandula vera MM plant cell suspension in a laboratory bioreactor. Biotechnol Prog 21:394–396

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Fons L, Garzón MT, Micol V (2010) Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J Agric Food Chem 58:161–171

    Article  PubMed  Google Scholar 

  • Petersen M (1997) Cytochrome P-450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165–1172

    Article  CAS  Google Scholar 

  • Petersen M (2013) Rosmarinic acid: new aspects. Phytochem Rev 12:207–227

    Article  CAS  Google Scholar 

  • Petersen M, Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z Naturforsch C 43:501–504

    CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Molecules of interest: rosmarinic acid. Phytochemistry 62:121–125

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Häusler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei. Planta 189:10–14

    Article  CAS  Google Scholar 

  • Petersen M, Haeusler E, Meinhard J, Karwatzki B, Gerlowski C (1994) The biosynthesis of rosmarinic acid in suspension cultures of Coleus blumei. Plant Cell Tiss Organ Cult 38:171–179

    Article  CAS  Google Scholar 

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Sun S, Luo S, Zhang J, Xiao X, Zhang L, Wang F, Liu S (2014) Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum. Plant Cell Rep 33:669–680

    Article  PubMed  CAS  Google Scholar 

  • Rowan DD, Cao M, Lin-Wang K, Cooney JM, Jensen DJ, Austin PT, Hunt MB, Norling C, Hellens RP, Schaffer RJ, Allan AC (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol 182:102–115

    Article  PubMed  CAS  Google Scholar 

  • Sahu R, Gangopadhyay M, Dewanjee S (2013) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Solenostemon scutellarioides. Acta Physiol Plant 35:1473–1481

    Article  CAS  Google Scholar 

  • Shimojo Y, Kosaka K, Noda Y, Shimizu T, Shirasawa T (2010) Effect of rosmarinic acid in motor dysfunction and life span in a mouse model of familial amyotrophic lateral sclerosis. J Neurosci Res 88:896–904

    PubMed  CAS  Google Scholar 

  • Su WW, Humphrey AE (1991) Production of rosmarinic acid from perfusion culture of Anchusa officinalis in a membrane-aerated bioreactor. Biotechnol Lett 13:889–892

    Article  CAS  Google Scholar 

  • Su WW, Lei F (1993) Rosmarinic acid production in perfused Anchusa officinalis culture: effect of inoculum size. Biotechnol Lett 15:1035–1038

    Article  CAS  Google Scholar 

  • Su WW, Lei F, Su LY (1993) Perfusion strategy for rosmarinic acid production by Anchusa officinalis. Biotechnol Bioeng 42:884–890

    Article  PubMed  CAS  Google Scholar 

  • Su WW, Lei F, Kao NP (1995) High density cultivation of Anchusa officinalis in a stirred-tank bioreactor with in situ filtration. Appl Microbiol Biotechnol 44:293–299

    Article  CAS  Google Scholar 

  • Szabo E, Thelen A, Petersen M (1999) Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep 18:485–489

    Article  CAS  Google Scholar 

  • Tada H, Murakami Y, Omoto T, Shimomura K, Ishimaru K (1996) Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry 42:431–434

    Article  CAS  Google Scholar 

  • Timm S, Nunes-Nesi A, Pärnik T, Morgenthal K, Wienkoop S, Keerberg O, Weckwerth W, Kleczkowski L, Ferni AR, Bauwe H (2008) A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vogelsang K, Schneider BM, Petersen M (2006) Production of rosmarinic acid and a new rosmarinic acid 3-O-beta-d-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton. Planta 223:369–373

    Article  PubMed  CAS  Google Scholar 

  • Vostálová J, Zdarilová A, Svobodová A (2010) Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch Dermatol Res 302:171–181

    Article  PubMed  Google Scholar 

  • Weremczuk-Jezyna I, Grzegorczyk-Karolak I, Frydrych B, Królicka A, Wysokinska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35:2095–2103

    Article  CAS  Google Scholar 

  • Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang L (2009) Methyl jasmonate dramatically enhances the accumulation of phenolic acids in Salvia miltiorrhiza hairy root cultures. Physiol Plant 137:1–9

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Zhang L, Gao S, Saechao S, Di P, Jungfen C, Wansheng C (2011) The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS ONE 6:e29713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xing BY, Dang XL, Zhang JY, Wang B, Chen ZY, Dong JE (2013) Effects of methyl jasmonate on the biosynthesis of rosmarinic acid and related enzymes in Salvia miltiorrhiza suspension cultures. Zhiwu Shengli Xuebao/Plant Physiol J 49:1326–1332

    Google Scholar 

  • Xu H, Kim YK, Jin XJ, Lee SY, Park SU (2008) Rosmarinic acid biosynthesis in callus and cell cultures of Agastache rugosa Kuntze. J Med Plants Res 2:237–241

    Google Scholar 

  • Yan Q, Shi M, Ng J, Wu JY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170:853–858

    Article  CAS  Google Scholar 

  • Zenk MH, El-Shagi H, Ulbrich B (1977) Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften 64:585–586

    Article  CAS  Google Scholar 

  • Zhang Y, Yan YP, Wang ZZ (2010) The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J Agric Food Chem 58:12168–12175

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Yan Y, Wang B, Liang Z, Liu Y, Liu F, Qi Z (2014a) Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. J Biosci Bioeng 117:645–651

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yan YP, Wu YC, Hua WP, Chen C, Ge Q, Wang ZZ (2014b) Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation. Metab Eng 21:71–80

    Article  PubMed  Google Scholar 

  • Zhou LL, Zeng HN, Shi MZ, Xie DY (2008) Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis. Planta 229:37–51

    Article  PubMed  CAS  Google Scholar 

  • Zibetti AW, Aydi A, Livia MA, Bolzan A, Barth D (2013) Solvent extraction and purification of rosmarinic acid from supercritical fluid extraction fractionation waste: economic evaluation and scale-up. J Supercrit Fluids 83:133–145

    Article  Google Scholar 

  • Zuluaga DL, Gonzali S, Loreti E, Pucciariello C, Degl’Innocenti ED, Guidi L, Alpi A, Perata P (2008) Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol 35:606–618

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the University of Barcelona and Salamanca was financially supported by the Spanish MEC (BIO2011-29856-C02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Palazon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khojasteh, A., Mirjalili, M.H., Hidalgo, D. et al. New trends in biotechnological production of rosmarinic acid. Biotechnol Lett 36, 2393–2406 (2014). https://doi.org/10.1007/s10529-014-1640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1640-0

Keywords