Skip to main content
Log in

Pretreatment with mechano-growth factor E peptide protects bone marrow mesenchymal cells against damage by fluid shear stress

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Improper fluid shear stress (FSS) can cause serious damages to bone marrow mesenchymal stem cells (MSCs). Mechano-growth factor (MGF) E peptide pretreatment was proposed to protect MSCs against FSS damage in this study. MSCs were exposed to FSS for 30 min after they were pretreated with MGF E peptide for 24 h. Then, the effects of MGF E peptide on the viability, proliferation and cell apoptosis of MSCs were investigated. MGF E peptide pretreatment could recover the cellular metabolic activity of MSCs reduced by 72 dyne cm−2 FSS and had a synergistic effect with FSS on the cellular metabolic viability of MSCs under 24 and 72 dyne cm−2 FSS. These results suggested that MGF E peptide pretreatment could be an effective method for the protection of FSS damage in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aperghis M, Johnson IP, Cannon J, Yang SY, Goldspink G (2004) Different levels of neuroprotection by two insulin-like growth factor-I splice variants. Brain Res 1009:213–218

    Article  PubMed  CAS  Google Scholar 

  • Ates K, Yang SY, Orrell RW, Sinanan AC, Simons P, Solomon A, Beech S, Goldspink G, Lewis MP (2007) The IGF-I splice variant MGF increases progenitor cells in ALS, dystrophic and normal muscle. FEBS Lett 581:2727–2732

    Article  PubMed  CAS  Google Scholar 

  • Beresewicz M, Majewska M, Makarewicz D, Vayro S, Zablocka B, Górecki DC (2010) Changes in the expression of insulin-like growth factor 1 variants in the postnatal brain development and in neonatal hypoxia-ischaemia. Int J Dev Neurosci 28:91–97

    Article  PubMed  CAS  Google Scholar 

  • Carano RAD, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8:980–989

    Article  PubMed  CAS  Google Scholar 

  • Cartmell SH, Porter BD, García AJ, Guldberg RE (2003) Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng 9:1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Cheema U, Brown R, Mudera V, Yang SY, McGrouther G, Goldspink G (2005) Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle. J Cell Physiol 202:67–75

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Zhang BB, Wang YL, Xian CY, Yang L, Deng MY, Peng Q, Li YX (2012) Mechano-growth factor E peptide inhibits the differentiation and mineralization of osteoblasts. Arch Oral Biol 57:720–727

    Article  CAS  Google Scholar 

  • Collins JM, Goldspink PH, Russell B (2010) Migration and proliferation of human mesenchymal stem cells is stimulated by different regions of the mechano-growth factor prohormone. J Mol Cell Cardiol 49:1042–1045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cui H, Yi Q, Feng J, Tang L (2014) Mechano-growth factor E peptide regulates migration and differentiation of bone marrow mesenchymal stem cells. J Mol Endcrinol 52:111–120

    Article  CAS  Google Scholar 

  • Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2:187–208

    Article  PubMed  CAS  Google Scholar 

  • Deng MY, Zhang BB, Wang K, Liu F, Xiao HL, Zhao JH, Liu P, Li YX, Lin FC, Wang YL (2011) Mechano-growth factor E peptide promotes osteoblasts proliferation and bone-defect healing in rabbits. Int Orthop 35:1099–1106

    Article  PubMed  PubMed Central  Google Scholar 

  • Dluzniewska J, Sarnowska A, Beresewicz M, Johnson I, Srai SKS, Ramesh B, Goldspink G, Gorecki DC, Zablocka B (2005) A strong neuroprotective effect of the autonomous C-terminal peptide of IGF-1 Ec (MGF) in brain ischemia. FASEB J 19:1896–1916

    PubMed  CAS  Google Scholar 

  • Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57:344–358

    Article  PubMed  CAS  Google Scholar 

  • Fornaro M, Hinken AC, Needle S, Hu E, Trendelenburg AU, Mayer A, Rosenstiel A, Chang C, Meier V, Billin AN, Becherer JD, Brace AD, Evans WJ, Glass DJ, Russell AJ (2014) Mechano-growth factor peptide, the COOH terminus of unprocessed insulin-like growth factor 1, has no apparent effect on myoblasts or primary muscle stem cells. Am J Physiol Endocrinol Metab 306:E150–E156

    Article  PubMed  CAS  Google Scholar 

  • Gardel LS, Serra LA, Reis RL, Gomes ME (2014) Use of perfusion bioreactors and large animal models for long bone tissue engineering. Tissue Eng Part B Rev 20:126–146. doi:10.1089/ten.teb.2013.0010

    Article  PubMed  CAS  Google Scholar 

  • Goldspink G (2012) Age-related loss of muscle mass and strength. J Aging Res 2012:158279

    Article  PubMed  PubMed Central  Google Scholar 

  • Górecki DC, Beresewicz M, Zabłocka B (2007) Neuroprotective effects of short peptides derived from the insulin-like growth factor 1. Neurochem Int 50:451–458

    Article  Google Scholar 

  • Grayson WL, Marolt D, Bhumiratana S, Frohlich M, Guo XE, Vunjak-Novakovic G (2011) Optimizing the medium perfusion rate in bone tissue engineering bioreactors. Biotechnol Bioeng 108:1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Hill M, Wernig A, Goldspink G (2003) Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 203:89–99

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang Y, Jia XL, Bai K, Gong XH, Fan YB (2010) Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch Med Res 41:497–505

    Article  PubMed  Google Scholar 

  • Jayasuriya AC, Shah C (2008) Controlled release of insulin-like growth factor-1 and bone marrow stromal cell function of bone-like mineral layer-coated poly (lactic-co-glycolic acid) scaffolds. J Tissue Eng Regen Med 2:43–49

    Article  PubMed  CAS  Google Scholar 

  • Jonitz A, Lochner K, Lindner T, Hansmann D, Marrot A, Bader R (2011) Oxygen consumption, acidification and migration capacity of human primary osteoblasts within a three-dimensional tantalum scaffold. J Mater Sci Mater Med 22:2089–2095

    Article  PubMed  CAS  Google Scholar 

  • Kandalla PK, Goldspink G, Butler-Browne G, Mouly V (2011) Mechano-growth factor E peptide (MGF-E), derived from an isform of IGF-1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages. Mech Ageing Dev 132:154–162

    Article  PubMed  CAS  Google Scholar 

  • Kreke MR, Goldstein AS (2004) Hydrodynamic shear stimulates osteocalcin expression but not proliferation of bone marrow stromal cells. Tissue Eng 10:780–788

    Article  PubMed  Google Scholar 

  • Li XH, Yu XY, Lin QX, Deng CY, Shan ZX, Yang M, Lin SG (2007) Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol 42:295–303

    Article  PubMed  CAS  Google Scholar 

  • Li DQ, Tang TT, Lu JX, Dai KR (2009) Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Tissue Eng Part A 15:2773–2783

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang Y, Wang P, Zhang B, Yan W, Pan J (2013) In vitro cytocompatibility evaluation of MGF-Ct24E chemically grafted and physically blended with maleic anhydride modified poly(D, L-lactic acid). J Biomater Sci Polym Ed 24:849–864

    Article  PubMed  CAS  Google Scholar 

  • Linkhart TA, Mohan S, Baylink DJ (1996) Growth factors for bone growth and repair: IGF. TGF beta and BMP. Bone 19(1S):1–12

    Google Scholar 

  • Luo W, Xiong W, Zhou J, Fang Z, Chen WJ, Fan YB, Li F (2011) Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells. Acta Bioch Bioph Sin 43:210–216

    Article  CAS  Google Scholar 

  • Matheny RW, Nindl BC, Adamo ML (2010) Minireview: mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151:865–875

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mavrommatis E, Shioura KM, Los T, Goldspink PH (2013) The E-domain region of mechano-growth factor inhibits cellular apoptosis and preserves cardiac function during myocardial infarction. Mol Cell Biochem 381:69–83

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mills P, Lafreniere JF, Benabdallah BF, El Fahime EM, Tremblay JP (2007) A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano-growth factor. Exp Cell Res 313:527–537

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Chen P, Jia X, Wang L, Li P, Yang L, Wang Y, Fan Y (2014) Microencapsulation of mechano-growth factor E peptide for sustained delivery and bioactivity maintenance. Int J Pharm 469:214–221

    Article  PubMed  CAS  Google Scholar 

  • Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963

    Article  PubMed  CAS  Google Scholar 

  • Riddle RC, Taylor AF, Genetos DC, Donahue HJ (2006) MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol 290:C776–C784

    Article  PubMed  CAS  Google Scholar 

  • Rueger JM (1998) Bone replacement materials-state of the art and the way ahead. Orthopade 27:72–79

    PubMed  CAS  Google Scholar 

  • Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, Gille J, Henschler R (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108:3938–3944

    Article  PubMed  Google Scholar 

  • Stavropoulou A, Halapas A, Sourla A, Philippou A, Papageorgiou E, Papalois A, Koutsilieris M (2009) IGF-1 expression in infarcted myocardium and MGF E peptide actions in rat cardiomyocytes in vitro. Mol Med 15:127–135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Turner CH, Forwood MR, Otter MW (1994) Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J 8:875–878

    PubMed  CAS  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27:339–360

    Article  PubMed  CAS  Google Scholar 

  • Wu JM, Wu KW, Lin F, Luo Q, Yang L, Shi YS, Song GB, Sung PL (2013) Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway. Biochem Biophys Res Commun 441:202–207

    Article  PubMed  CAS  Google Scholar 

  • Yang SY, Alnaqeeb M, Simpson H, Goldspink G (1996) Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil 17:487–495

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Schmitt JF, Lee EH (2011) Immunohistochemical analysis of human mesenchymal stem cells differentiating into chondrogenic, osteogenic, and adipogenic lineages. Method Mol Biol 698:353–366

    Article  CAS  Google Scholar 

  • Zhang XM, Lv YG, Chen GB, Zou Y, Lin CW, Yang L, Guo P, Lin MP (2012) Effect of mild hypothermia on breast cancer cells adhesion and migration. BioSci Trends 6:313–324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (11172338, 11032012), the Program for New Century Excellent Talents in University (NCET-10-0879), the Fundamental Research Funds for the Central Universities (CDJZR 12238801, CQDXWL-2012-Z001), and the Sharing Fund of Chongqing University’s Large-scale Equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Hao, X., Sha, Y. et al. Pretreatment with mechano-growth factor E peptide protects bone marrow mesenchymal cells against damage by fluid shear stress. Biotechnol Lett 36, 2559–2569 (2014). https://doi.org/10.1007/s10529-014-1625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1625-z

Keywords

Navigation