Skip to main content
Log in

The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems

  • Review and Discussion Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Malic enzyme (ME; NADP+-dependent; EC 1.1.40) provides NADPH for lipid biosynthesis in oleaginous microorganisms. Its role in vivo depends on there being an adequate supply of NADH to drive malate dehydrogenase to convert oxaloacetate to malate as a component of a cycle of three reactions: pyruvate → oxaloacetate → malate and, by the action of ME, back to pyruvate. However, the availability of cytosolic NADH is limited and, consequently, ancillary means of producing NADPH are necessary. Stoichiometries are given for the conversion of glucose to triacylglycerols involving ME with and without the reactions of the pentose phosphate pathway (PPP) as an additional source of NADPH. Some oleaginous microorganisms (such as Yarrowia lipolytica), however, lack a cytosolic ME and, if the PPP is the sole provider of NADPH, the theoretical yield of triacylglycerol from glucose falls to 27.6 % (w/w) from 31.6 % when ME is present. An alternative route for NADPH generation via a cytosolic isocitrate dehydrogenase (NADP+-dependent) is then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Botham P, Ratledge C (1979) A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous microorganisms. J Gen Microbiol 114:361–375

    Article  CAS  PubMed  Google Scholar 

  • Boulton C (1982) The biochemistry of lipid accumulation in oleaginous yeasts. PhD thesis; University of Hull, Hull

  • Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • Evans CT, Ratledge C (1983) Biochemical activities during lipid accumulation in Candida curvata. Lipids 18:630–635

    Article  CAS  PubMed  Google Scholar 

  • Evans CT, Ratledge C (1984) Phosphofructokinase and the regulation of the flux of carbon from glucose to lipid in the oleaginous yeast Rhodosporidium toruloides. J Gen Microbiol 130:3251–3264

    CAS  Google Scholar 

  • Evans CT, Ratledge C (1985a) The role of the mitochondrial NAD+: isocitrate dehydrogenase in lipid accumulation by the oleaginous yeast Rhodosporidium toruloides CBS 14. Can J Microbiol 31:845–850

    Article  CAS  Google Scholar 

  • Evans CT, Ratledge C (1985b) Possible regulatory roles of ATP:citrate lyase, malic enzyme and AMP deaminase in lipid accumulation by Rhodosporidium toruloides CBS 14. Can J Microbiol 31:1000–1005

    Article  CAS  Google Scholar 

  • Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of few? Phytochemistry 70:828–832

    Article  CAS  PubMed  Google Scholar 

  • Galvez S, Gadal P (1995) On the function of the NADP-dependent isocitrate dehydrogenase isoenzyme in living organisms. Plant Sci 105:1–14

    Article  CAS  Google Scholar 

  • Gill CO, Hall MJ, Ratledge C (1977) Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture. Appl Environ Microbiol 33:231–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gujjarri P, Suh SO, Coumes K, Zhou JJ (2011) Charcterization of oleaginous yeasts revealed two novel species: Trichosporon cacoliposimilis sp. nov. and Trichosporon oleaginosus sp. nov. Mycologia 103:1110–1118

    Article  Google Scholar 

  • Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G (1993) Lipid production by an unsaturated fatty acid auxotroph of the oleaginous yeast Apiotrichum curvatum growing in a single-stage continous culture. Appl Microbiol Biotechnol 40:483–488

    Article  CAS  Google Scholar 

  • Hong SP, Xue Z, Zhu QQ (2011) Pentose phosphate pathway upregulation to increase production of non-native products of interest in transgenic microorganisms. US Patent 2011/0244512

  • Keech DB, Mattoo AK, Carabott MJJ, Wallace JC (1976) The ATP-dependent reductive carboxylation of 2-oxoglutarate using cytosol from rat liver. Biochem Biophys Res Commun 71:712–718

    Article  CAS  PubMed  Google Scholar 

  • Kendrick A, Ratledge C (1992) Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur J Biochem 209:667–673

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang P, Ge Y, Wang W, Abbas A, Zhu G (2013a) NADP+-Specific isocitrate dehydrogenase from oleaginous yeast Yarrowia lipolytica CLIB122: biochemical characterization and coenzyme sites evaluation. Appl Biochem Biotechnol 171:403–416

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Sun H, Mo X, Li X, Xu B, Tian P (2013b) Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorual glutinis. Appl Microbiol Biotechnol 97:4927–4936

    Article  CAS  PubMed  Google Scholar 

  • Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408

    Article  CAS  PubMed  Google Scholar 

  • Li-Beisson Y, Peltier G (2013) Third-generation biofuels: current and future research on microalgal lipid technology. OCL 20(6):D606

    Article  Google Scholar 

  • Lin H, Wang Q, Shen Q, Zhan J, Zhao Y (2013) Genetic engineering of microorganisms for biodiesel production. Bioengineered 4:292–304

    Article  PubMed  Google Scholar 

  • Macool DJ, Xue Z, Zhu QQ (2013) Expression of cytosolic malic enzyme in transgenic Yarrowia to increase lipid production. US Patent 2013/0260427

  • Metallo CM, Gameiro PA, Bell EL, Mattaini KR et al (2012) Reversible glutamine metabolism by IDH1 mediated lipogenesis under hypoxia. Nature 481:380–384

    CAS  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C et al (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Estopier A, Guillouet SE (2014) D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica. J Biotechnol 170:35–41

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (1982) Microbial oils and fats: an assessment of their commercial potential. Prog Indust Microbiol 16:119–206

    CAS  Google Scholar 

  • Ratledge C (1997) Microbial lipids. In: Rehm HJ, Reed G (eds) Biotechnology, vol 7, 2nd edn. VCH, Weinheim, pp 133–197

    Chapter  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2013) Microbial production of polyunsaturated fatty acids as neutraceuticals. In: McNeil B, Archer D, Giavasis I, Harvey L (eds) Microbial production of food ingredients, enzymes and nutraceuticals. Woodhead Publ Ltd, Cambridge, pp 531–558

    Chapter  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113

    Article  CAS  PubMed  Google Scholar 

  • Satoh Y, Nakamura Y (1984) Characteristics of the reverse reaction of NADP+-isocitrate dehydrogenase from castor bean. Physiol Plant 62:561–565

    Article  CAS  Google Scholar 

  • Shang C, Zhu S, Yuan Z, Wang Z (2012) Molecular cloning and characterization of malic enzyme gene from Dunaliella parva. Adv Mater Res 347–353:2536–2540

    Google Scholar 

  • Shen H, Gong Z, Yang X, Jin G, Bai F, Zhao ZK (2013) Kinetics of continous cultivation of the oleaginous yeast Rhodosporidium toruloides. J Biotechnol 168:85–89

    Article  CAS  PubMed  Google Scholar 

  • Sijtsma L, Anderson AJ, Ratledge C (2010) Alternative carbon sources for heterotrophic production of docosahexaenoic acid by the marine alga Crypthecodium cohnii. In: Cohen Z, Ratledge C (eds) Single cell oils, 2nd edn. AOCS Press, Urbana, pp 131–149

    Google Scholar 

  • Song YD, Wynn JP, Li YJ, Grantham D, Ratledge C (2001) A pregenetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 147:1507–1515

    CAS  PubMed  Google Scholar 

  • Srere PA, Ovadi J (1972) Enzyme-enzyme interactions and their metabolic role. FEBS Lett 268:360–364

    Article  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Zhang S, Tan H, Zhao ZK (2010) Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Mol Biotechnol 45:121–128

    Article  CAS  PubMed  Google Scholar 

  • Vongsangnak W, Zhang Y, Chen W, Ratledge C, Song Y (2012) Annotation and analysis of malic enzyme genes encoding for multiple isoforms in the fungus Mucor circinelloides CBS 277.49. Biotechnol Lett 34:941–947

    Article  CAS  PubMed  Google Scholar 

  • Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K (2013) The repertoire of malic enzymes in yeast and fungi: insight into their evolutionary functional and structural significance. Microbiology 159:2548–2557

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chen W, Feng Y, Ren Y et al (2011) Genome characterization of the oleaginous fungus Mortierella alpina. PLoS ONE 6:e28319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129

    Article  CAS  PubMed  Google Scholar 

  • Wynn JP, Kendrick A, Ratledge C (1997) Sesamol as an inhibitor of growth and lipid metabolism in Mucor circinelloides via its action on malic enzyme. Lipids 32:605–610

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Sharpe PL, Hong SP, Yadav NS et al (2013) Production of omega-3 eicosapentaenoic acid by Yarrowia lipolytica. Nat Biotechnol 31:734–740

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Zhang S, Zhou YJ, Zhu Z, Lin X, Zhao ZK (2012) Characterization of the mitochondrial NAD+-dependent isocitrate dehydrogenase of the oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 94:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Ykema A, Verbree EC, Kater MM, Smit H (1988) Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in wheypermeate. Appl Microbiol Biotechnol 29:211–218

    Article  CAS  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang L, Chen H, Chen YQ, Ratledge C, Song Y, Chen W (2013) Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation. Biotechnol Lett 35:2091–2098

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang S, Liu H, Shen H et al (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu Y, Zhou P, Hu J, Zhang R et al (2013) Characterization of Pythium transcriptome and gene expression analysis at different stages of fermentation. PLoS ONE 8:e65552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I owe a debt of gratitude to Professor Hans van Dijken, The Netherlands, for returning my attention to the unsolved problem of NADPH generation in oleaginous microorganisms that had been highlighted in an earlier review of mine (Ratledge 1997) but then had been somewhat conveniently forgotten in subsequent discussions of this topic. I am also indebted to him for a critical appraisal of the first draft of this review and for bringing to my attention some of the key papers involving the possible synthesis of isocitrate from 2-oxoglutarate in mammalian systems. Any remaining errors and oversights are entirely my own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Ratledge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratledge, C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36, 1557–1568 (2014). https://doi.org/10.1007/s10529-014-1532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1532-3

Keywords

Navigation