Skip to main content

Advertisement

Log in

A novel perfused rotary bioreactor for cardiomyogenesis of embryonic stem cells

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Developments in bioprocessing technology play an important role for overcoming challenges in cardiac tissue engineering. To this end, our laboratory has developed a novel rotary perfused bioreactor for supporting three-dimensional cardiac tissue engineering. The dynamic culture environments provided by our novel perfused rotary bioreactor and/or the high-aspect rotating vessel produced constructs with higher viability and significantly higher cell numbers (up to 4 × 105 cells/bead) than static tissue culture flasks. Furthermore, cells in the perfused rotary bioreactor showed earlier gene expressions of cardiac troponin-T, α- and β-myosin heavy chains with higher percentages of cardiac troponin-I-positive cells and better uniformity of sacromeric α-actinin expression. A dynamic and perfused environment, as provided by this bioreactor, provides a superior culture performance in cardiac differentiation for embryonic stem cells particularly for larger 3D constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

HARV:

High-aspect rotating vessel

ρ :

Density of fluid

υ :

Viscosity of fluid

D mi :

Diffusion coefficient of glucose

Y i :

Mass fraction of glucose

J i :

Diffusion flux of glucose

R i :

Net production rate of glucose

S i :

User defined source from neighboring grids of glucose

References

  • Akins RE, Schroedl NA, Gonda SR, Hartzell CR (1997) Neonatal rat heart cells cultured in simulated microgravity. In Vitro Cell Dev Biol Anim 33:337–343

    Article  PubMed  CAS  Google Scholar 

  • Amsden B, Turner N (1999) Diffusion characteristics of calcium alginate gels. Biotechnol Bioeng 65:605–610

    Article  PubMed  CAS  Google Scholar 

  • Antin PB, Bates MA, Zhang W, Garriock RJ, Yatskievych TA (2002) Precocious expression of cardiac troponin T in early chick embryos is independent of bone morphogenetic protein signaling. Dev Dyn 225:135–141

    Article  PubMed  CAS  Google Scholar 

  • Azarin SM, Palecek SP (2010) Development of scalable culture systems for human embryonic stem cells. Biochem Eng J 48:378–384

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bauwens C, Yin T, Dang S, Peerani R, Zandstra PW (2005) Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol Bioeng 90:452–461

    Article  PubMed  CAS  Google Scholar 

  • Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8:175–188

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Hu YC (2006) Bioreactors for tissue engineering. Biotechnol Lett 28:1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW (2004) Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22:275–282

    Article  PubMed  Google Scholar 

  • Gerecht-Nir S, Cohen S, Itskovitz-Eldor J (2004) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol Bioeng 86:493–502

    Article  PubMed  CAS  Google Scholar 

  • Hecker L, Khait L, Radnoti D, Birla R (2009) Novel bench-top perfusion system improves functional performance of bioengineered heart muscle. J Biosci Bioeng 107:183–190

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Jia X, Bai K, Gong X, Fan Y (2010) Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch Med Res 41:497–505

    Article  PubMed  Google Scholar 

  • Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32:733–742

    Article  PubMed  CAS  Google Scholar 

  • Hwang YS, Randle WL, Bielby RC, Polak JM, Mantalaris A (2006) Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with HepG2-conditioned medium and modulation of the embryoid body formation period: application to skeletal tissue engineering. Tissue Eng 12:1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Lake J, Rathjen J, Remiszewski J, Rathjen PD (2000) Reversible programming of pluripotent cell differentiation. J Cell Sci 113:555–566

    PubMed  CAS  Google Scholar 

  • Lim M, Teo A, Mantalaris A (2012) Hydrodynamics and bioprocess considerations in designing bioreactors for cardiac tissue engineering. J Regen Med Tissue Eng 1:4

    Article  Google Scholar 

  • Ma CYJ, Kumar R, Xu XY, Mantalaris A (2007) A combined fluid dynamics, mass transport and cell growth model for a three-dimensional perfused bioreactor for tissue engineering of haematopoietic cells. Biochem Eng J 35:1–11

    Article  CAS  Google Scholar 

  • McDevitt T, Palecek S (2008) Innovation in the culture and derivation of pluripotent human stem cells. Curr Opin Biotechnol 19:527–533

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344–358

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Niebruegge S, Nehring A, Bär H, Schroeder M, Zweigerdt R, Lehmann J (2008) Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng Part A 14:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Niebruegge S, Bauwens C, Peerani R, Thavandiran N et al (2009) Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng 102:493–507

    Article  PubMed  CAS  Google Scholar 

  • Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286:H507–H516

    Article  PubMed  CAS  Google Scholar 

  • Rungarunlert S, Klincumhom N, Bock I, Nemes C, Techakumphu M, Pirity MK, Dinnyes A (2011) Enhanced cardiac differentiation of mouse embryonic stem cells by use of the slow-turning, lateral vessel (STLV) bioreactor. Biotechnol Lett 33(8):1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Sargent CY, Berguig GY, McDevitt TC (2009) Cardiomyogenic differentiation of embryoid bodies is promoted by rotary orbital suspension culture. Tissue Eng Part A 15:331–342

    Article  PubMed  CAS  Google Scholar 

  • Sargent CY, Berguig GY, Kinney MA, Hiatt LA, Carpenedo RL, Berson RE, McDevitt TC (2010) Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture. Biotechnol Bioeng 105:611–626

    Article  PubMed  CAS  Google Scholar 

  • Schroeder M, Niebruegge S, Werner A, Willbold E et al (2005) Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng 92:920–933

    Article  PubMed  CAS  Google Scholar 

  • Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A (2008) The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials 29:3946–3952

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Matsumura M, Veliky I (1984) Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol Bioeng 26:53–58

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Weidinger G, Osugi T, Kohn AD et al (2007) Biphasic role for Wnt/-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA 104:9685–9690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wong SSY, Bernstein HS (2010) Cardiac regeneration using human embryonic stem cells: producing cells for future therapy. Regen Med 5:763–775

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2004) Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc 126:1590–1591

    Article  PubMed  CAS  Google Scholar 

  • Yau WWY, Tang MK, Chen E, Wong IWC, Lee HSS, Lee KKH (2011) Cardiogenol C can induce mouse hair bulge progenitor cells to transdifferentiate into cardiomyocyte-like cells. Proteome Sci 9:3

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yeo D, Kyparissides A, Cha JM, Aguilar-Gallardo C et al (2013) Improving embryonic stem cell expansion through the combination of perfusion and bioprocess model design. PLoS ONE. doi:10.1371/journal.pone.0081728

    Google Scholar 

  • Yirme G, Amit M, Laevsky I, Osenberg S, Itskovitz-Eldor J (2008) Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev 17:1227–1242

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann WH, Schneiderbanger K, Schubert P, Didie M et al (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90:223–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by Nanyang Technological University (NTU)-Imperial joint PhD program and Singapore National Research Foundation (NRF) under the NRF-Technion Research Thrust (NRF-Technion/2012-SG#04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayasari Lim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, A., Mantalaris, A., Song, K. et al. A novel perfused rotary bioreactor for cardiomyogenesis of embryonic stem cells. Biotechnol Lett 36, 947–960 (2014). https://doi.org/10.1007/s10529-014-1456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1456-y

Keywords