Skip to main content
Log in

Biopharmaceutical liquid formulation: a review of the science of protein stability and solubility in aqueous environments

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Formulation scientists employed in the biopharmaceutical industry face the challenge of creating liquid aqueous formulations for proteins that never had evolutionary pressure to be exceptionally stable or soluble. Yet commercial products usually need a shelf life of 2 years to be economically viable. The research done in this field is dominated by physical chemists who have developed theories like preferential interaction, preferential hydration and excluded volume to explain the mechanisms for the interaction between salt, small organic molecules and proteins. This review aims to translate the research findings on protein stability and solubility produced by the physical chemists and make it accessible to formulation scientists working within the biopharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Arakawa T, Tsumoto K (2003) The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation. Biochem Biophys Res Commun 304:148–152

    Article  PubMed  CAS  Google Scholar 

  • Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timasheff SN (2007) Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem 127:1–8

    Article  PubMed  CAS  Google Scholar 

  • Batchelor JD, Olteanu A, Tripathy A, Pielak GJ (2004) Impact of protein denaturants and stabilizers on water structure. J Am Chem Soc 126:1958–1961

    Article  PubMed  CAS  Google Scholar 

  • Batra J, Xu K, Zhou H (2009) Nonadditive effects of mixed crowding on protein stability. Proteins 77:133–138

    Article  PubMed  CAS  Google Scholar 

  • Benton LA, Smith AE, Young GB, Pielak GJ (2012) Unexpected effects of macromolecular crowding on protein stability. Biochemistry 51:9773–9775

    Article  PubMed  CAS  Google Scholar 

  • Boncina M, Rescic J, Vlachy V (2008) Solubility of lysozyme in polyethylene glycol–electrolyte mixtures: the depletion interaction and ion-specific effects. Biophys J 95:1285–1294

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Born B, Kim SJ, Ebbinghaus S, Gruebele M, Havenith M (2009) The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss 141:161–173

    Article  PubMed  CAS  Google Scholar 

  • Bruzdziak P, Panuszko A, Stangret J (2013) Influence of osmolytes on protein and water structure: a step to understanding the mechanism of protein stabilization. J Phys Chem B 11:11502–11508

    Article  CAS  Google Scholar 

  • Bye JW, Falconer RJ (2013) Thermal stability of lysozyme as a function of ion concentration: a reappraisal of the relationship between the Hofmeister series and protein stability. Protein Sci 22:1563–1570

    Article  PubMed  CAS  Google Scholar 

  • Bye JW, Meliga SC, Ferachou D, Zeitler JA, Falconer RJ (2014) Analysis of the hydration water around bovine serum albumin using terahertz coherent synchrotron radiation. J Phys Chem A (accepted)

  • Cheng W, Joshi SB, He F, Brems DN, He B, Kerwin BA, Volkin DB, Middaugh CR (2012) Comparison of high-throughput biophysical methods to identify stabilizing excipients for a model IgG2 monoclonal antibody: conformational stability and kinetic aggregation. J Pharm Sci 101:1701–1720

    Article  PubMed  CAS  Google Scholar 

  • Collins KD (1995) Sticky ions in biological systems. Proc Natl Acad Sci USA 92:5553–5557

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Comez L, Lupi L, Morresi A, Paolantoni M, Sassi P (2013) More is different: experimental results on the effect of biomolecules on the dynamics of hydration water. J Phys Chem Lett 4:1188–1192

    Article  CAS  Google Scholar 

  • Courtenay ES, Capp MW, Anderson CF, Record MT (2000) Vapor pressure osmometry studies of osmolyte–protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro. Biochemistry 39:4455–4471

    Article  PubMed  CAS  Google Scholar 

  • Courtenay ES, Capp MW, Record MT (2001) Thermodynamics of interactions of urea and guanidinium salts with protein surface: relationship between solute effects on protein processes and changes in water-accessible surface area. Protein Sci 10:2485–2497

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ding T, Li R, Zeitler JA, Huber TL, Gladden LF, Middelberg APJ, Falconer RJ (2010) Terahertz and far-infrared spectroscopy of alanine-rich peptides with variable ellipticity. Opt Express 18:27431–27444

    Article  PubMed  CAS  Google Scholar 

  • Ebbinghaus S, Kim SJ, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Havenith M (2007) An extended dynamical hydration shell around proteins. Proc Natl Acad Sci USA 104:20749–20752

    Article  PubMed Central  PubMed  Google Scholar 

  • Falconer RJ, Markelz AG (2012) Terahertz spectroscopic analysis of peptides and proteins. J Infrared Millim Te 33:973–988

    Article  CAS  Google Scholar 

  • Falconer RJ, Marangon M, van Sluyter SC, Neilson KA, Chan C, Waters EJ (2010) Thermal stability of thaumatin-like protein, chitinase and invertase isolated from Sauvignon blanc and Semillon juice, and their role in haze formation in wine. J Agric Food Chem 58:975–980

    Article  PubMed  CAS  Google Scholar 

  • Falconer RJ, Chan C, Hughes K, Munro TP (2011) Stabilization of a monoclonal antibody during purification and formulation by addition of basic amino acid excipients. Chem Technol Biotechnol 86:942–948

    Article  CAS  Google Scholar 

  • He F, Hogan S, Latpov RF, Narhi LO, Razinkov VI (2010) High throughput thermostability screening of monoclonal antibody formulations. J Pharm Sci 99:1707–1720

    PubMed  CAS  Google Scholar 

  • Hofmeister F (1888) Zur lehre von der wirkung der salze. Zweite mitteilung. Arch Exp Pathol Pharmakol 24:247–260

    Article  Google Scholar 

  • Jezek J, Darton NJ, Derham BK, Royle N, Simpson I (2013) Biopharmaceutical formulations for pre-filled delivery devices. Expert Opin Drug Deliv 10:811–828

    Article  PubMed  CAS  Google Scholar 

  • Kunz W, Henle J, Ninham BW (2004) ‘Zur lehre von der wirkung der salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Colloid Interface Sci 9:19–37

    Article  CAS  Google Scholar 

  • Lund M, Vacha R, Jungwirth P (2008) Specific ion binding to macromolecules: effects of hydrophobicity and ion pairing. Langmuir 24:3387–3391

    Article  PubMed  CAS  Google Scholar 

  • Makhatadze GI, Privalov PL (1990a) Heat capacity of proteins II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol 213:385–391

    Article  PubMed  Google Scholar 

  • Makhatadze GI, Privalov PL (1990b) Heat capacity of proteins I. Partial molar heat capacity of individual amino acid residues in aqueous solutions: hydration effect. J Mol Biol 213:375–384

    Article  PubMed  CAS  Google Scholar 

  • Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370

    Article  PubMed  CAS  Google Scholar 

  • Mazur K, Heisler IA, Meech SR (2011) Water dynamics at protein interfaces: ultrafast optical Kerr study. J Phys Chem A 116:2678–2685

    Article  PubMed  CAS  Google Scholar 

  • Meliga SC, Farrugia W, Ramsland PA, Falconer RJ (2013) Cold-induced precipitation of a monoclonal IgM: a negative activation enthalpy reaction. J Phys Chem B 117:490–494

    Article  PubMed  CAS  Google Scholar 

  • Okur HI, Kherb J, Cremer PS (2013) Cations bind only weakly to amides in aqueous solutions. J Am Chem Soc 135:5062–5067

    Article  PubMed  CAS  Google Scholar 

  • Omta AW, Kropman MF, Woutersen S, Bakker HJ (2003) Negligible effect of ions on the hydrogen bond structure in liquid water. Science 301:347–349

    Article  PubMed  CAS  Google Scholar 

  • Record MT, Guinn E, Pegram L, Capp M (2013) Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model. Faraday Discuss 160:9–44

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rembert KB, Paterova J, Heyda J, Hilty C, Jungwirth P, Cremer PS (2012) Molecular mechanisms of ion-specific effects on proteins. J Am Chem Soc 134:10039–10046

    Article  PubMed  CAS  Google Scholar 

  • Rupley JA, Gratton E, Careri G (1983) Water and globular proteins. Trends Biochem Sci 8:18–22

    Article  CAS  Google Scholar 

  • Sanchez-Ruiz JM, Lopez-Lacomba JL, Cortijo M, Mateo PL (1988) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Santoro MM, Liu Y, Khan SMA, Hou LX, Bolen DW (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry 31:5278–5283

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger AP, Wang Y, Tadeo X, Millet O, Pielak GJ (2011) Macromolecular crowding fails to fold a globular protein in cells. J Am Chem Soc 133:8082–8085

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Singh LR, Poddar NK, Dar TA, Kumar R, Ahmad F (2011) Protein and DNA destabilization by osmolytes: the other side of the coin. Life Sci 88:117–125

    Article  PubMed  CAS  Google Scholar 

  • Sterpone F, Stirnermann G, Laage D (2012) Magnitude and molecular origin of water slowdown next to a protein. J Am Chem Soc 134:4116–4119

    Article  PubMed  CAS  Google Scholar 

  • Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G (1998) Protein hydration in solution: experimental observation by X-ray and neutron scattering. Proc Natl Acad Sci USA 95:2267–2272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tadeo X, Pons M, Millet O (2007) Influence of the Hofmeister anions on protein stability as studied by thermal denaturation and chemical shift perturbation. Biochemistry 46:917–923

    Article  PubMed  CAS  Google Scholar 

  • Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct 22:67–97

    Article  PubMed  CAS  Google Scholar 

  • Timasheff SN (2002) Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41:13473–13482

    Article  PubMed  CAS  Google Scholar 

  • Vinh NQ, Allen SJ, Plaxco KW (2011) Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions. J Am Chem Soc 133:8942–8947

    Article  PubMed  CAS  Google Scholar 

  • Vogt FG, Kord AS (2011) Development of quality-by-design analytical methods. J Pharma Sci 100:797–812

    Article  CAS  Google Scholar 

  • Von Hippel PH, Wong K-Y (1965) On the conformational stability of globular proteins. J Biol Chem 240:3909–3923

    Google Scholar 

  • Xie Q, Guo T, Liu J, Zhou HM (2004) The guanidine like effects of arginine on aminoacylase and salt-induced molten globule state. Int J Biochem Cell Biol 36:296–306

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Yu LX (2007) Pharmaceutical quality by design: product and process development, understanding and control. Pharm Res 25:781–791

    Article  CAS  Google Scholar 

  • Zhang Y, Cremer PS (2009) The inverse and direct Hofmeister series for lysozyme. Proc Natl Acad Sci USA 106:15249–15253

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Falconer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bye, J.W., Platts, L. & Falconer, R.J. Biopharmaceutical liquid formulation: a review of the science of protein stability and solubility in aqueous environments. Biotechnol Lett 36, 869–875 (2014). https://doi.org/10.1007/s10529-013-1445-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1445-6

Keywords

Navigation