Skip to main content
Log in

Emerging technologies and challenges for better and safer drugs

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Regardless of stringent safety regulations and increased compound selectivity by pharmaceutical companies, prediction of toxicity in humans is still far from perfect and adverse drug reactions are still detected after drug marketing. High costs of failures due to toxicity has led pharmaceutical companies to search for screening methods that would allow detection of toxicity issues at an early stage and improve their preclinical and clinical toxicology. Thanks to the last decade’s biotechnology revolution, new technologies like toxicogenomics have demonstrated the capacity to improve toxicity assessment. However, our understanding of toxicological mechanisms is still incomplete and a wide range of approaches must be used to gain insight into toxicity issues. Consequently, an array of in silico, in vitro and in vivo methods is utilized to predict toxicity and its causative mechanisms, improving drug development processes and minimizing costs of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amir-Aslani A (2008) Toxicogenomic predictive modeling: emerging opportunities for more efficient drug discovery and development. Technol Forecast Soc Chang 75:905–936

    Article  Google Scholar 

  • Arrowsmith J (2011a) Trial watch: phase II failures: 2008–2010. Nat Rev Drug Discov 10:328–329

    Article  CAS  PubMed  Google Scholar 

  • Arrowsmith J (2011b) Trial watch: phase III and submission failures: 2007–2010. Nat Rev Drug Discov 10:87

    Article  CAS  PubMed  Google Scholar 

  • BCG (2002) In: Mathieu MP (ed) Parexel’s pharmaceutical R&D statistical sourcebook 2002/2003. Parexel Int Corp., Waltham

    Google Scholar 

  • Bennett D (2012) Making human organs on a chip. Bloomberg Businessweek. http://www.businessweek.com/articles/2012-06-27/making-human-organs-on-a-chip. Accessed 30 Aug 2013

  • Bolker J (2012) Model organisms: there’s more to life than rats and flies. Nature 491:31–33

    Article  CAS  PubMed  Google Scholar 

  • Chin KV, Kong AN (2002) Application of DNA microarrays in pharmacogenomics and toxicogenomics. Pharm Res 19:1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Erns EH, Di L (2003) Pharmaceutical profiling in drug discovery. Drug Discov Today 11:623–631

    Google Scholar 

  • Fabre N, Anglade I, Vericat JA (2009) Application of toxicogenomic tools in the drug research and development process. Toxicol Lett 186:13–17

    Article  CAS  PubMed  Google Scholar 

  • Giacomini KM, Krauss RM, Roden DM, Eichelbaum M, Hayden MR, Nakamura Y (2007) When good drugs go bad. Nature 446:975–977

    Article  CAS  PubMed  Google Scholar 

  • Gregori-Puigjane E, Setola V, Hert J, Crews BA, Irwin JJ, Lounkine E, Marnett L, Roth BL, Shoichet BK (2012) Identifying mechanism-of-action targets for drugs and probes. Proc Natl Acad Sci USA 109:11178–11183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hackam DG, Redelmeier DA (2006) Translation of research evidence from animals to humans. J Am Med Assoc 296:1731–1732

    CAS  Google Scholar 

  • Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, DE Ingber (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159ra147

    Article  PubMed  Google Scholar 

  • Kolata G (2013) Mice fall short as test subjects for some of humans’ deadly ills. The New York Times. http://www.nytimes.com/2013/02/12/science/testing-of-some-deadly-diseases-on-mice-mislead-report-says.html?_r=0. Accessed 30 Aug 2013

  • Kramer JA, Sagartz JE, Morris DL (2007) The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov 6:636–649

    Article  CAS  PubMed  Google Scholar 

  • Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH (2002) Timing of new black box warnings and withdrawals for prescription medications. J Am Med Assoc 287:2215–2220

    Article  Google Scholar 

  • Lee K (2012) Organs on a chip: harvard plans to recreate the human body on silicon. http://www.techhive.com. Accessed 30 Aug 2013

  • Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Cote S, Shoichet BK, Urban L (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367

    CAS  PubMed Central  PubMed  Google Scholar 

  • McMillian M, Nie A, Parker JB, Leone A, Kemmerer M, Bryant S, Herlich J, Yieh L, Bittner A, Liu X, Wan J, Johnson MD, Lord P (2005) Drug-induced oxidative stress in rat liver from a toxicogenomics perspective. Toxicol Appl Pharmacol 207:171–178

    Article  PubMed  Google Scholar 

  • Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I (2004) Where is the evidence that animal research benefits humans? Brit Med J 328:514–517

    Article  PubMed Central  PubMed  Google Scholar 

  • Rice J (2012) Animal models: not close enough. Nature 484:S9

    Article  PubMed  Google Scholar 

  • Roggen EL (2011) In vitro toxicity testing in the twenty-first century. Front Pharmacol 2:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ, Roth BL (2000) Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102:2836–2841

    Article  CAS  PubMed  Google Scholar 

  • Seok J, Warren HS, Cuenca AG, Mindrinos MN et al (2013) Inflammation and host response to injury, large scale collaborative research program (2013): genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110:3507–3512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simon-Hettich B, Rothfuss A, Steger-Hartmann T (2006) Use of computer-assisted prediction of toxic effects of chemical substances. Toxicology 224:156–162

    Article  CAS  PubMed  Google Scholar 

  • Steiner G, Suter L, Boess F, Gasser R, de Vera MC, Albertini S, Ruepp S (2004) Discriminating different classes of toxicants by transcript profiling. Environ Health Perspect 112:1236–1248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ulrich R, Friend SH (2002) Toxicogenomics and drug discovery: will new technologies help us produce better drugs? Nat Rev Drug Discov 1:84–88

    Article  CAS  PubMed  Google Scholar 

  • US Food and Drug Administration (2004) Innovation and stagnation: challenge and opportunity on the critical path to new medical products. http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm. Accessed 30 Aug 2013

  • van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR (2010) Can animal models of disease reliably inform human studies? PLoS Med 7:e1000245

    Article  PubMed Central  PubMed  Google Scholar 

  • Veith GD (2004) On the nature, evolution and future of quantitative structure–activity relationships (QSAR) in toxicology. SAR QSAR Environ Res 15:323–330

    Article  CAS  PubMed  Google Scholar 

  • von Herrath MG, Nepom GT (2005) Lost in translation: barriers to implementing clinical immunotherapeutics for autoimmunity. J Exp Med 202:1159–1162

    Article  Google Scholar 

  • Walker JD, Carlsen L, Hulzebos E, Simon-Hettich B (2002) Global government applications of analogues, SARs and QSARs to predict aquatic toxicity, chemical or physical properties, environmental fate parameters and health effects of organic chemicals. SAR QSAR Environ Res 13:607–616

    Article  CAS  PubMed  Google Scholar 

  • White AC, Mueller RA, Gallavan RH, Aaron S, Wilson AG (2003) A multiple in silico program approach for the prediction of mutagenicity from chemical structure. Mutat Res 539:77–89

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Mégarbane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theodosiou, M., Amir-Aslani, A. & Mégarbane, B. Emerging technologies and challenges for better and safer drugs. Biotechnol Lett 36, 677–684 (2014). https://doi.org/10.1007/s10529-013-1408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1408-y

Keywords

Navigation