Skip to main content

Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway


Lung cancer is a major cause of cancer deaths throughout the world and the complexity of apoptosis resistance in lung cancer is apparent. Venom from Heteractis magnifica caused dose-dependent decreases in survival of the human non-small-cell lung cancer cell line, as determined by the MTT and Crystal Violet assays. The H. magnifica venom induced cell cycle arrest and induced apoptosis of A549 cells, as confirmed by annexin V/propidium iodide staining. The venom-induced apoptosis in A549 cells was characterized by cleavage of caspase-3 and a reduction in the mitochondrial membrane potential. Interestingly, crude extracts from H. magnifica had less effect on the survival of non-cancer cell lines. In the non-cancer cells, the mechanism via which cell death occurred was through necrosis not apoptosis. These findings are important for future work using H. magnifica venom for pharmaceutical development to treat human lung cancer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Anderluh G, Maček P (2002) Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 40:111–124

    PubMed  Article  CAS  Google Scholar 

  2. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  3. Fan T, Han L, Cong R, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 37:719–727

    Article  CAS  Google Scholar 

  4. Fedorov S, Dyshlovoy S, Monastyrnaya M, Shubina L et al (2010) The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon 55:811–817

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  5. Fine A, Janssen-Heininger Y, Soultanakis R, Swisher S, Uhal B (2000) Apoptosis in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 279:L423–L427

    PubMed  CAS  Google Scholar 

  6. Kominsky D, Bickel R, Tyler K (2002) Reovirus-induced apoptosis requires both death receptor and mitochondrial-mediated caspase-dependent pathways of cell death. Cell Death Differ 9:926–933

    PubMed  Article  CAS  Google Scholar 

  7. Kroemer G (2003) Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304:433–435

    PubMed  Article  CAS  Google Scholar 

  8. Lanio ME, Morera V, Alvarez C, Tejuca M et al (2001) Purification and characterization of two hemolysins from Stichodactyla helianthus. Toxicon 39:187–194

    PubMed  Article  CAS  Google Scholar 

  9. Leal MC, Puga J, Serodio J, Gomes NCM, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades—where and what are we bioprospecting? PLoS One 7:30580

    Article  CAS  Google Scholar 

  10. Marino A, Valveri V, Muià C, Crupi R, Rizzo G, Musci G, Giuseppa LS (2004) Cytotoxicity of the nematocyst venom from the sea anemone Aiptasia mutabilis. Comp Biochem Physiol C 139:295–301

    Google Scholar 

  11. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    PubMed  Article  CAS  Google Scholar 

  12. Penton D, Pérez-Barzaga V, Díaz I, Reytor M et al (2011) Validation of a mutant of the pore-forming toxin sticholysin-I for the construction of proteinase-activated immunotoxins. Protein Eng Des Sel 24:485–493

    PubMed  Article  CAS  Google Scholar 

  13. Ramezanpour M, Burke da Silva K, Sanderson BJ (2012) Differential susceptibilities of human lung, breast and skin cancer cell lines to killing by five sea anemone venoms. J Venom Anim Toxins 18:157–163

    Article  Google Scholar 

  14. Saotome K, Morita H, Umeda M (1989) Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol In Vitro 3:317–321

    PubMed  Article  CAS  Google Scholar 

  15. Sencic L, Maček P (1990) New method for isolation of venom from the sea-anemone Actinia cari—purification and characterization of cytolytic toxins. Comp Biochem Phys B 97:687–693

    CAS  Google Scholar 

  16. Senderowicz AM (2003) Novel small molecule cyclin-dependent kinases modulators in human clinical trials. Cancer Biol Ther 2:84–95

    Google Scholar 

  17. Shivapurkar N, Reddy J, Chaudhary P, Gazdar A (2003) Apoptosis and lung cancer: a review. J Cell Biochem 88:885–898

    PubMed  Article  CAS  Google Scholar 

  18. Soletti RC, de Faria GP, Vernal J, Terenzi H, Anderluh G, Borges HL, Moura-Neto V, Gabilan NH (2008) Potentiation of anticancer-drug cytotoxicity by sea anemone pore-forming proteins in human glioblastoma cells. Anticancer Drugs 19:517–525

    PubMed  Article  CAS  Google Scholar 

  19. Standker L, Beress L, Garateix A, Christ T, Ravens U, Salceda E, Soto E, John H, Forssmanna W, Aneiros A (2006) A new toxin from the sea anemone Condylactis gigantea with effect on sodium channel inactivation. Toxicon 48:211–220

    PubMed  Article  CAS  Google Scholar 

  20. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    PubMed  Article  CAS  Google Scholar 

  21. Tytgat J, Bosmans F (2007) Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels. Toxicon 49:550–560

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  22. Uechi G, Toma H, Arakawa T, Sato Y (2005) Molecular cloning and functional expression of hemolysin from the sea anemone Actineria villosa. Protein Expr Purif 40:379–384

    PubMed  Article  CAS  Google Scholar 

  23. Young FM, Phungtamdet W, Sanderson BJ (2005) Modification of MTT assay conditions to examine the cytotoxic effects of amitraz on the human lymphoblastoid cell line, WIL2NS. Toxicol In Vitro 19:1051–1059

    PubMed  Article  CAS  Google Scholar 

Download references


This study was supported by an FMC Foundation Grant and a Flinders Centre for Innovation in Cancer (FCIC) research grant. The authors are thankful to Mrs. Bailey from the Department of Immunology, Allergy and Arthritis, Flinders Medical Centre, for her collaboration with flow cytometry.

Author information



Corresponding author

Correspondence to Barbara J. S. Sanderson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramezanpour, M., da Silva, K.B. & Sanderson, B.J.S. Venom present in sea anemone (Heteractis magnifica) induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-mediated pathway. Biotechnol Lett 36, 489–495 (2014).

Download citation


  • Apoptosis
  • Cancer cell lines (A549 and MRC5)
  • Heteractis magnifica
  • Mitochondria
  • Lung cancer
  • Sea anemone
  • Venom