Skip to main content
Log in

Co-expression for intracellular processing in microbial protein production

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The biological activity of a recombinant protein is highly dependent on its biophysical properties including post-translational modifications, solubility, and stability. Production of active recombinant proteins requires careful design of the expression strategy and purification schemes. This is often achieved by proper modification of the target protein during and/or after protein synthesis in the host cells. Such co-translational or post-translational processing of recombinant proteins is typically enabled by co-expressing the required enzymes, folding chaperones, co-factors and/or processing enzymes in the host. Various applications of the co-expression technology in protein production are discussed in this review with representative examples described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acharya A, Xu XJ, Husain-Ponnampalam RD, Hoffmann-Benning S, Kuo MH (2005) Production of constitutively acetylated recombinant p53 from yeast and Escherichia coli by tethered catalysis. Protein Expr Purif 41:417–425

    PubMed  CAS  Google Scholar 

  • Aon JC, Caimi RJ, Taylor AH, Lu Q, Oluboyede F, Dally J, Kessler MD, Kerrigan JJ, Lewis TS, Wysocki LA, Patel PS (2008) Suppressing post-translational gluconoylation of heterologous proteins by metabolic engineering of Escherichia coli. Appl Environ Microbiol 74:950–958

    PubMed Central  PubMed  CAS  Google Scholar 

  • Arnesen T (2011) Towards a functional understanding of protein N-terminal acetylation. PLoS Biol 9:e1001074

    PubMed Central  PubMed  CAS  Google Scholar 

  • Arnesen T, Van DP, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F, Gevaert K (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci USA 106:8157–8162

    PubMed Central  PubMed  CAS  Google Scholar 

  • Austin BP, Nallamsetty S, Waugh DS (2009) Hexahistidine-tagged maltose-binding protein as a fusion partner for the production of soluble recombinant proteins in Escherichia coli. Methods Mol Biol 498:157–172

    PubMed  CAS  Google Scholar 

  • Baker RT, Catanzariti AM, Karunasekara Y, Soboleva TA, Sharwood R, Whitney S, Board PG (2005) Using deubiquitylating enzymes as research tools. Methods Enzymol 398:540–554

    PubMed  CAS  Google Scholar 

  • Banki MR, Gerngross TU, Wood DW (2005) Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci 14:1387–1395

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bariola PA, Russell BA, Monahan SJ, Stroop SD (2007) Identification and quantification of N alpha-acetylated Y. pestis fusion protein F1-V expressed in Escherichia coli using LCMS E. J Biotechnol 130:11–23

    PubMed  CAS  Google Scholar 

  • Barnard GC, McCool JD, Wood DW, Gerngross TU (2005) Integrated recombinant protein expression and purification platform based on Ralstonia eutropha. Appl Environ Microbiol 71:5735–5742

    PubMed Central  PubMed  CAS  Google Scholar 

  • Beranek M, Drsata J, Palicka V (2001) Inhibitory effect of glycation on catalytic activity of alanine aminotransferase. Mol Cell Biochem 218:35–39

    PubMed  CAS  Google Scholar 

  • Berkmen M (2012) Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 82:240–251

    PubMed  CAS  Google Scholar 

  • Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif 59:94–102

    PubMed  CAS  Google Scholar 

  • Carstens CP (2003) Use of tRNA-supplemented host strains for expression of heterologous genes in E. coli. Methods Mol Biol 205:225–233

    PubMed  CAS  Google Scholar 

  • Choi JH, Keum KC, Lee SY (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 66:876–885

    Google Scholar 

  • Covalt JC Jr, Cao TB, Magdaroag JR, Gross LA, Jennings PA (2005) Temperature, media, and point of induction affect the N-terminal processing of interleukin-1beta. Protein Expr Purif 41:45–52

    PubMed  CAS  Google Scholar 

  • De Cotiis DA, Woll MP, Fox TE, Hill RB, Levenson R, Flanagan JM (2008) Optimized expression and purification of myristoylated human neuronal calcium sensor 1 in E. coli. Protein Expr Purif 61:103–112

    PubMed Central  PubMed  Google Scholar 

  • de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B (2007) Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol 7:32

    PubMed Central  PubMed  Google Scholar 

  • Depuydt M, Messens J, Collet JF (2011) How proteins form disulfide bonds. Antioxid Redox Signal 15:49–66

    PubMed  CAS  Google Scholar 

  • Donnelly MI, Zhou M, Millard CS, Clancy S, Stols L, Eschenfeldt WH, Collart FR, Joachimiak A (2006) An expression vector tailored for large-scale, high-throughput purification of recombinant proteins. Protein Expr Purif 47:446–454

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    PubMed  CAS  Google Scholar 

  • Ehmer PB, Jose J, Hartmann RW (2000) Development of a simple and rapid assay for the evaluation of inhibitors of human 17alpha-hydroxylase-C(17,20)-lyase (P450cl7) by coexpression of P450cl7 with NADPH-cytochrome-P450-reductase in Escherichia coli. J Steroid Biochem Mol Biol 75:57–63

    PubMed  CAS  Google Scholar 

  • Flynn CR, Smoke CC, Furnish E, Komalavilas P, Thresher J, Yi Z, Mandarino LJ, Brophy CM (2007) Phosphorylation and activation of a transducible recombinant form of human HSP20 in Escherichia coli. Protein Expr Purif 52:50–58

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gohara DW, Ha CS, Kumar S, Ghosh B, Arnold JJ, Wisniewski TJ, Cameron CE (1999) Production of “authentic” poliovirus RNA-dependent RNA polymerase (3D(pol)) by ubiquitin-protease-mediated cleavage in Escherichia coli. Protein Expr Purif 17:128–138

    PubMed  CAS  Google Scholar 

  • Haacke A, Fendrich G, Ramage P, Geiser M (2009) Chaperone over-expression in Escherichia coli: apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates. Protein Expr Purif 64:185–193

    PubMed  CAS  Google Scholar 

  • Harnastai IN, Gilep AA, Usanov SA (2006) The development of an efficient system for heterologous expression of cytochrome P450s in Escherichia coli using hemA gene co-expression. Protein Expr Purif 46:47–55

    PubMed  CAS  Google Scholar 

  • Heal WP, Wright MH, Thinon E, Tate EW (2012) Multifunctional protein labeling via enzymatic N-terminal tagging and elaboration by click chemistry. Nat Protoc 7:105–117

    CAS  Google Scholar 

  • Hendrickson TL, de Crecy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147–176

    PubMed  CAS  Google Scholar 

  • Hirel PH, Schmitter MJ, Dessen P, Fayat G, Blanquet S (1989) Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci USA 86:8247–8251

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hlavica P (2009) Assembly of non-natural electron transfer conduits in the cytochrome P450 system: a critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 27:103–121

    PubMed  CAS  Google Scholar 

  • Hsieh CH, Huang SY, Wu YC, Liu LF, Han CC, Liu YC, Tam MF (2007) Expression of proteins with dimethylarginines in Escherichia coli for protein–protein interaction studies. Protein Sci 16:919–928

    PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson LN, Noble ME, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85:149–158

    PubMed  CAS  Google Scholar 

  • Johnson M, Coulton AT, Geeves MA, Mulvihill DP (2010) Targeted amino-terminal acetylation of recombinant proteins in E. coli. PLoS One 5:e15801

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jurado P, de Lorenzo V, Fernandez LA (2006) Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli: evidence that chaperone activity is the prime effect of thioredoxin. J Mol Biol 357:49–61

    PubMed  CAS  Google Scholar 

  • Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kapust RB, Waugh DS (2000) Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr Purif 19:312–318

    PubMed  CAS  Google Scholar 

  • Kemble DJ, Wang YH, Sun G (2006) Bacterial expression and characterization of catalytic loop mutants of SRC protein tyrosine kinase. Biochemistry 45:14749–14754

    PubMed  CAS  Google Scholar 

  • Kerrigan JJ, McNulty DE, Burns M, Allen KE, Tang X, Lu Q, Trulli JM, Johanson KO, Kane JF (2008) Frameshift events associated with the lysyl-tRNA and the rare arginine codon, AGA, in Escherichia coli: a case study involving the human Relaxin 2 protein. Protein Expr Purif 60:110–116

    PubMed  CAS  Google Scholar 

  • Kerrigan JJ, Xie Q, Ames RS, Lu Q (2011) Production of protein complexes via co-expression. Protein Expr Purif 75:1–14

    PubMed  CAS  Google Scholar 

  • Kim KM, Yi EC, Baker D, Zhang KY (2001) Post-translational modification of the N-terminal His tag interferes with the crystallization of the wild-type and mutant SH3 domains from chicken src tyrosine kinase. Acta Crystallogr D Biol Crystallogr 57:759–762

    PubMed  CAS  Google Scholar 

  • Kirkpatrick RB, McDevitt PJ, Matico RE, Nwagwu S, Trulli SH, Mao J, Moore DD, Yorke AF, McLaughlin MM, Knecht KA, Elefante LC, Calamari AS, Fornwald JA, Trill JJ, Jonak ZL, Kane J, Patel PS, Sathe GM, Shatzman AR, Tapley PM, Johanson KO (2003) A bicistronic expression system for bacterial production of authentic human interleukin-18. Protein Expr Purif 27:279–292

    PubMed  CAS  Google Scholar 

  • Kluskens LD, Kuipers A, Rink R, de Boef E, Fekken S, Driessen AJ, Kuipers OP, Moll GN (2005) Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibiotic nisin. Biochemistry 44:12827–12834

    PubMed  CAS  Google Scholar 

  • Kluskens LD, Nelemans SA, Rink R, de Vries L, Meter-Arkema A, Wang Y, Walther T, Kuipers A, Moll GN, Haas M (2009) Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J Pharmacol Exp Ther 328:849–854

    PubMed  CAS  Google Scholar 

  • Kolaj O, Spada S, Robin S, Wall JG (2009) Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Fact 8:9

    PubMed Central  PubMed  Google Scholar 

  • Kristelly R, Qiu TW, Gunn NJ, Scanlon DB, Mulhern TD (2011) Bacterial expression and purification of active hematopoietic cell kinase. Protein Expr Purif 78:14–21

    PubMed  CAS  Google Scholar 

  • Ku J, Mirmira RG, Liu L, Santi DV (1997) Expression of a functional non-ribosomal peptide synthetase module in Escherichia coli by coexpression with a phosphopantetheinyl transferase. Chem Biol 4:203–207

    PubMed  CAS  Google Scholar 

  • Kuipers A, de Boef E, Rink R, Fekken S, Kluskens LD, Driessen AJ, Leenhouts K, Kuipers OP, Moll GN (2004) NisT, the transporter of the lantibiotic nisin, can transport fully modified, dehydrated, and unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. J Biol Chem 279:22176–22182

    PubMed  CAS  Google Scholar 

  • Kyratsous CA, Silverstein SJ, DeLong CR, Panagiotidis CA (2009) Chaperone-fusion expression plasmid vectors for improved solubility of recombinant proteins in Escherichia coli. Gene 440:9–15

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liao YD, Jeng JC, Wang CF, Wang SC, Chang ST (2004) Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Protein Sci 13:1802–1810

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lin Y, Teng K, Huan L, Zhong J (2011) Dissection of the bridging pattern of bovicin HJ50, a lantibiotic containing a characteristic disulfide bridge. Microbiol Res 166:146–154

    PubMed  CAS  Google Scholar 

  • Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    PubMed  CAS  Google Scholar 

  • Liu CC, Choe H, Farzan M, Smider VV, Schultz PG (2009) Mutagenesis and evolution of sulfated antibodies using an expanded genetic code. Biochemistry 48:8891–8898

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11:56

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lu Q, Burns MC, McDevitt PJ, Graham TL, Sukman AJ, Fornwald JA, Tang X, Gallagher KT, Hunsberger GE, Foley JJ, Schmidt DB, Kerrigan JJ, Lewis TS, Ames RS, Johanson KO (2009) Optimized procedures for producing biologically active chemokines. Protein Expr Purif 65:251–260

    PubMed  CAS  Google Scholar 

  • Maertens B, Spriestersbach A, von Groll U, Roth U, Kubicek J, Gerrits M, Graf M, Liss M, Daubert D, Wagner R, Schafer F (2010) Gene optimization mechanisms: a multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli. Protein Sci 19:1312–1326

    PubMed Central  PubMed  CAS  Google Scholar 

  • Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5:75–86

    PubMed  CAS  Google Scholar 

  • Martinez-Alonso M, Garcia-Fruitos E, Ferrer-Miralles N, Rinas U, Villaverde A (2010) Side effects of chaperone gene co-expression in recombinant protein production. Microb Cell Fact 9:64

    PubMed Central  PubMed  Google Scholar 

  • Mehlin C, Boni E, Buckner FS, Engel L, Feist T, Gelb MH, Haji L, Kim D, Liu C, Mueller N, Myler PJ, Reddy JT, Sampson JN, Subramanian E, Van Voorhis WC, Worthey E, Zucker F, Hol WG (2006) Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes. Mol Biochem Parasitol 148:144–160

    PubMed  CAS  Google Scholar 

  • Miao L, Fang H, Li Y, Chen H (2007) Studies of the in vitro Nalpha-acetyltransferase activities of E. coli RimL protein. Biochem Biophys Res Commun 357:641–647

    PubMed  CAS  Google Scholar 

  • Mironova R, Niwa T, Dimitrova R, Boyanova M, Ivanov I (2003) Glycation and post-translational processing of human interferon-gamma expressed in Escherichia coli. J Biol Chem 278:51068–51074

    PubMed  CAS  Google Scholar 

  • Moldes C, Farinos GP, de Eugenio LI, Garcia P, Garcia JL, Ortego F, Hernandez-Crespo P, Castanera P, Prieto MA (2006) New tool for spreading proteins to the environment: Cry1ab toxin immobilized to bioplastics. Appl Microbiol Biotechnol 72:88–93

    PubMed  CAS  Google Scholar 

  • Moll GN, Kuipers A, Rink R (2010) Microbial engineering of dehydro-amino acids and lanthionines in non-lantibiotic peptides. Antonie Van Leeuwenhoek 97:319–333

    PubMed  CAS  Google Scholar 

  • Moon TS, Dueber JE, Shiue E, Prather KL (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12:298–305

    PubMed  CAS  Google Scholar 

  • Murata T, Shinozuka Y, Obata Y, Yokoyama KK (2008) Phosphorylation of two eukaryotic transcription factors, Jun dimerization protein 2 and activation transcription factor 2, in Escherichia coli by Jun N-terminal kinase 1. Anal Biochem 376:115–121

    PubMed  CAS  Google Scholar 

  • Nagao J, Harada Y, Shioya K, Aso Y, Zendo T, Nakayama J, Sonomoto K (2005) Lanthionine introduction into nukacin ISK-1 prepeptide by co-expression with modification enzyme NukM in Escherichia coli. Biochem Biophys Res Commun 336:507–513

    PubMed  CAS  Google Scholar 

  • Nallamsetty S, Waugh DS (2006) Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr Purif 45:175–182

    PubMed  CAS  Google Scholar 

  • Neumann H, Peak-Chew SY, Chin JW (2008) Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat Chem Biol 4:232–234

    PubMed  CAS  Google Scholar 

  • Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64:1694–1699

    PubMed Central  PubMed  CAS  Google Scholar 

  • Osapay G, Prokai L, Kim HS, Medzihradszky KF, Coy DH, Liapakis G, Reisine T, Melacini G, Zhu Q, Wang SH, Mattern RH, Goodman M (1997) Lanthionine-somatostatin analogs: synthesis, characterization, biological activity, and enzymatic stability studies. J Med Chem 40:2241–2251

    PubMed  CAS  Google Scholar 

  • Peleg Y, Unger T (2008) Application of high-throughput methodologies to the expression of recombinant proteins in E. coli. Methods Mol Biol 426:197–208

    PubMed  CAS  Google Scholar 

  • Polevoda B, Arnesen T, Sherman F (2009) A synopsis of eukaryotic N-alpha-terminal acetyltransferases: nomenclature, subunits and substrates. BMC Proc 3(Suppl 6):S2

    PubMed Central  PubMed  Google Scholar 

  • Rakitzis ET, Papandreou P (1998) Reactivity of 6-phosphogluconolactone with hydroxylamine: the possible involvement of glucose-6-phosphate dehydrogenase in endogenous glycation reactions. Chem Biol Interact 113:205–216

    PubMed  CAS  Google Scholar 

  • Ren Y, Yao X, Dai H, Li S, Fang H, Chen H, Zhou C (2011) Production of Nalpha-acetylated thymosin alpha1 in Escherichia coli. Microb Cell Fact 10:26

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rink R, Arkema-Meter A, Baudoin I, Post E, Kuipers A, Nelemans SA, Akanbi MH, Moll GN (2010) To protect peptide pharmaceuticals against peptidases. J Pharmacol Toxicol Methods 61:210–218

    PubMed  CAS  Google Scholar 

  • Saitoh H, Vaccaro W, Kawasaki E (2009) Strategies for the expression of SUMO-modified target proteins in Escherichia coli. Methods Mol Biol 497:211–221

    PubMed  CAS  Google Scholar 

  • Seeliger MA, Young M, Henderson MN, Pellicena P, King DS, Falick AM, Kuriyan J (2005) High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci 14:3135–3139

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shen TJ, Ho NT, Simplaceanu V, Zou M, Green BN, Tam MF, Ho C (1993) Production of unmodified human adult hemoglobin in Escherichia coli. Proc Natl Acad Sci USA 90:8108–8112

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shen TJ, Ho NT, Zou M, Sun DP, Cottam PF, Simplaceanu V, Tam MF, Bell DA Jr, Ho C (1997) Production of human normal adult and fetal hemoglobins in Escherichia coli. Protein Eng 10:1085–1097

    PubMed  CAS  Google Scholar 

  • Shi Y, Brown C, Walsh C (1994) Expression of recombinant human casein kinase II and recombinant heat shock protein 90 in Escherichia coli and characterization of their interactions. Proc Natl Acad Sci USA. 91(7):2767–2771

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shi Y, Yang X, Garg N, van der Donk WA (2011) Production of lantipeptides in Escherichia coli. J Am Chem Soc 133:2338–2341

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shih YP, Wu HC, Hu SM, Wang TF, Wang AH (2005) Self-cleavage of fusion protein in vivo using TEV protease to yield native protein. Protein Sci 14:936–941

    PubMed Central  PubMed  CAS  Google Scholar 

  • Solbiati J, Chapman-Smith A, Miller JL, Miller CG, Cronan JE Jr (1999) Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol 290:607–614

    PubMed  CAS  Google Scholar 

  • Sonoda H, Daimon K, Yamaji H, Sugimura A (2009) Efficient production of active Vibrio proteolyticus aminopeptidase in Escherichia coli by co-expression with engineered vibriolysin. Appl Microbiol Biotechnol 84:191–198

    PubMed  CAS  Google Scholar 

  • Steinmann B, Christmann A, Heiseler T, Fritz J, Kolmar H (2010) In vivo enzyme immobilization by inclusion body display. Appl Environ Microbiol 76:5563–5569

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sugase K, Landes MA, Wright PE, Martinez-Yamout M (2008) Overexpression of post-translationally modified peptides in Escherichia coli by co-expression with modifying enzymes. Protein Expr Purif 57:108–115

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sun J, Hopkins RC, Jenney FE, McTernan PM, Adams MW (2010) Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS One 5:e10526

    PubMed Central  PubMed  Google Scholar 

  • Sunbul M, Zhang K, Yin J (2009) Chapter 10 using phosphopantetheinyl transferases for enzyme post-translational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes. Methods Enzymol 458:255–275

    PubMed  CAS  Google Scholar 

  • Svensson CI, Rew Y, Malkmus S, Schiller PW, Taulane JP, Goodman M, Yaksh TL (2003) Systemic and spinal analgesic activity of a delta-opioid-selective lanthionine enkephalin analog. J Pharmacol Exp Ther 304:827–832

    PubMed  CAS  Google Scholar 

  • Tegel H, Tourle S, Ottosson J, Persson A (2010) Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expr Purif 69:159–167

    PubMed  CAS  Google Scholar 

  • Uchimura Y, Nakamura M, Sugasawa K, Nakao M, Saitoh H (2004a) Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem 331:204–206

    PubMed  CAS  Google Scholar 

  • Uchimura Y, Nakao M, Saitoh H (2004b) Generation of SUMO-1 modified proteins in E. coli: towards understanding the biochemistry/structural biology of the SUMO-1 pathway. FEBS Lett 564:85–90

    PubMed  CAS  Google Scholar 

  • Valsesia G, Medaglia G, Held M, Minas W, Panke S (2007) Circumventing the effect of product toxicity: development of a novel two-stage production process for the lantibiotic gallidermin. Appl Environ Microbiol 73:1635–1645

    PubMed Central  PubMed  CAS  Google Scholar 

  • Van Valkenburgh HA, Kahn RA (2002) Coexpression of proteins with methionine aminopeptidase and/or N-myristoyltransferase in Escherichia coli to increase acylation and homogeneity of protein preparations. Methods Enzymol 344:186–193

    PubMed  Google Scholar 

  • Varshavsky A (2005) Ubiquitin fusion technique and related methods. Methods Enzymol 399:777–799

    PubMed  CAS  Google Scholar 

  • Vetting MW, de Carvalho LP, Roderick SL, Blanchard JS (2005) A novel dimeric structure of the RimL Nalpha-acetyltransferase from Salmonella typhimurium. J Biol Chem 280:22108–22114

    PubMed  CAS  Google Scholar 

  • Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7:285

    PubMed Central  PubMed  Google Scholar 

  • Wang T, Evdokimov E, Yiadom K, Yan Z, Chock PB, Yang DC (2003) Biotin-ubiquitin tagging of mammalian proteins in Escherichia coli. Protein Expr Purif 30:140–149

    PubMed  CAS  Google Scholar 

  • Wang Y, Wu SL, Hancock WS, Trala R, Kessler M, Taylor AH, Patel PS, Aon JC (2005) Proteomic profiling of Escherichia coli proteins under high cell density fed-batch cultivation with overexpression of phosphogluconolactonase. Biotechnol Prog 21:1401–1411

    PubMed  CAS  Google Scholar 

  • Wang YH, Ayrapetov MK, Lin X, Sun G (2006) A new strategy to produce active human Src from bacteria for biochemical study of its regulation. Biochem Biophys Res Commun 346:606–611

    PubMed  CAS  Google Scholar 

  • Warren WC, Bentle KA, Schlittler MR, Schwane AC, O’Neil JP, Bogosian G (1996) Increased production of peptide deformylase eliminates retention of formylmethionine in bovine somatotropin overproduced in Escherichia coli. Gene 174:235–238

    PubMed  CAS  Google Scholar 

  • Wu J, Chang S, Gong X, Liu D, Ma Q (2006) Identification of N-terminal acetylation of recombinant human prothymosin alpha in Escherichia coli. Biochim Biophys Acta 1760:1241–1247

    PubMed  CAS  Google Scholar 

  • Yan Z, Caldwell GW, McDonell PA (1999) Identification of a gluconic acid derivative attached to the N-terminus of histidine-tagged proteins expressed in bacteria. Biochem Biophys Res Commun 262:793–800

    PubMed  CAS  Google Scholar 

  • Yue BG, Ajuh P, Akusjarvi G, Lamond AI, Kreivi JP (2000) Functional coexpression of serine protein kinase SRPK1 and its substrate ASF/SF2 in Escherichia coli. Nucleic Acids Res 28:E14

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zaleski P, Wawrzyniak P, Sobolewska A, Mikiewicz D, Wojtowicz-Krawiec A, Chojnacka-Puchta L, Zielinski M, Plucienniczak G, Plucienniczak A (2012) New cloning and expression vector derived from Escherichia coli plasmid pIGWZ12; a potential vector for a two-plasmid expression system. Plasmid 67:264–271

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Edward Appelbaum, Robert Ames, Angela Bridges, Andrew Fosberry, Murray Brown, and James Fornwald for critical reading of the manuscript. Support from authors’ line managers at GlaxoSmithKline is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quinn Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Q., Aon, J.C. Co-expression for intracellular processing in microbial protein production. Biotechnol Lett 36, 427–441 (2014). https://doi.org/10.1007/s10529-013-1379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1379-z

Keywords

Navigation