Skip to main content

Development of a low-cost, phyto-tunnel system using Portulaca grandiflora and its application for the treatment of dye-containing wastewaters

Abstract

A phyto-tunnel was developed using a drilled PVC pipe. It was planted with Portulaca grandiflora and used for the treatment of a textile effluent and a dye mixture. COD, BOD, TOC, conductivity, turbidity, total suspended solids and total dissolved solids of the textile effluent, and dye mixture were decreased by 57, 45, 43, 52, 76, 77 and 24 % within 96 h, and 49, 62, 41, 63, 58, 71 and 33 %, within 60 h, respectively, after treatment. The effluent and dye mixture were decolorized up to 87 and 90 % within 96 and 60 h, respectively. Significant induction in activities of lignin peroxidase, tyrosinase and DCIP reductase was observed in root tissues of the plants. FTIR, HPLC and HPTLC of untreated and treated samples showed the formation of new metabolites and preferential dye removal. Phytotoxicity studies revealed the non-toxic nature of the metabolites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. APHA (2008) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association APHA–AWWA–WEF, Washington

    Google Scholar 

  2. Aubert S, Schwitzguebel J (2004) Screening of plant species for the phytotreatment of wastewater containing sulfonated anthraquinones. Water Res 38:3569–3575

    CAS  PubMed  Article  Google Scholar 

  3. Bulc T, Ojstrsek A (2008) The use of constructed wetland for dye-rich textile wastewater treatment. J Hazard Mater 155:76–82

    CAS  PubMed  Article  Google Scholar 

  4. Calheiros C, Quitério P, Silva G, Crispim L, Brix H, Moura S, Castro P (2012) Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J Environ Manage 95:66–71

    CAS  PubMed  Article  Google Scholar 

  5. Davies L, Carias C, Novais J, Martins-Dias S (2005) Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow constructed intermittent feeding constructed wetland. Ecol Eng 25:594–605

    Article  Google Scholar 

  6. Govindwar S, Kagalkar A (2010) Phytoremediation technologies for the removal of textile dyes: an overview and future prospectus. Nova Science Publishers Inc., New York

    Google Scholar 

  7. Ji G, Yang Y, Zhou Q, Sun T, Ni J (2004) Phytodegradation of extra heavy oil-based drill cuttings using mature reed wetland: an in situ pilot study. Environ Int 30:509–517

    CAS  PubMed  Article  Google Scholar 

  8. Kabra A, Khandare R, Kurade M, Govindwar S (2011a) Phytoremediation of a sulphonated azo dye Green HE4B by Glandularia pulchella (Sweet) Tronc. (Moss Verbena). Environ Sci Pollut Res 18:1360–1373

    CAS  Article  Google Scholar 

  9. Kabra A, Khandare R, Waghmode T, Govindwar S (2011b) Differential fate of metabolism of a sulfonated azo dye Remazol Orange 3R by plants Aster amellus Linn., Glandularia pulchella (Sweet) Tronc. and their consortium. J Hazard Mater 190:424–431

    CAS  PubMed  Article  Google Scholar 

  10. Kabra A, Khandare R, Waghmode T, Govindwar S (2012) Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia pulchella (Sweet) Tronc. Chemosphere 87:265–272

    CAS  PubMed  Article  Google Scholar 

  11. Kabra A, Khandare R, Govindwar S (2013) Development of a bioreactor for remediation of textile effluent and dye mixture: a plant-bacterial synergistic strategy. Water Res 47:1035–1048

    CAS  PubMed  Article  Google Scholar 

  12. Khandare R, Kabra A, Kurade M, Govindwar S (2011a) Phytoremediation potential of Portulaca grandiflora Hook. (Moss-Rose) in degrading a sulfonated diazo reactive dye Navy Blue HE2R (Reactive Blue 172). Bioresour Technol 102:6774–6777

    CAS  PubMed  Article  Google Scholar 

  13. Khandare R, Kabra A, Tamboli D, Govindwar S (2011b) The role of Aster amellus Linn. in the degradation of a sulfonated azo dye Remazol Red: a phytoremediation strategy. Chemosphere 82:1147–1154

    CAS  PubMed  Article  Google Scholar 

  14. Khandare R, Rane N, Waghmode T, Govindwar S (2012) Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ Sci Pollut Res 19:1709–1718

    CAS  Article  Google Scholar 

  15. Khandare R, Kabra A, Awate A, Govindwar S (2013a) Synergistic degradation of diazo dye Direct Red 5B by Portulaca grandiflora and Pseudomonas putida. Int J Environ Sci Technol 10:1039–1050

    CAS  Article  Google Scholar 

  16. Khandare R, Kabra A, Kadam S, Govindwar S (2013b) Treatment of dye containing wastewaters by a developed lab scale phytoreactor and enhancement of its efficacy by bacterial augmentation. Int Biodet Biodeg 78:89–97

    CAS  Article  Google Scholar 

  17. Kivaisi A (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16:545–560

    Article  Google Scholar 

  18. Mbuligwe S (2005) Comparative treatment of dye-rich wastewater in engineered wetland system (EWSs) vegetated with different plants. Water Res 39:271–280

    CAS  PubMed  Article  Google Scholar 

  19. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approach for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    CAS  PubMed  Article  Google Scholar 

  20. Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2007) Synthetic reactive dye waste water treatment by narrow-leaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals. Sci Total Environ 384:67–76

    CAS  PubMed  Article  Google Scholar 

  21. Noonpui S, Thiravetyan P (2011) Treatment of reactive azo dye from textile wastewater by burhead (Echinodorus cordifolius L.) in constructed wetland: effect of molecular size. J Environ Sci Health A 46:709–714

    CAS  Article  Google Scholar 

  22. Ong S, Uchiyamam K, Inadama D, Ishida Y, Yamagiwa K (2011) Treatment of azo dye Acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration. Bioresour Technol 101:9049–9057

    Article  Google Scholar 

  23. Salokhe M, Govindwar S (1999) Effect of carbon source on the biotransformation enzymes in Serratia marcescens. World J Microbiol Biotechnol 15:229–232

    CAS  Article  Google Scholar 

  24. Seawright D, Stickney R, Walker R (1998) Nutrient dynamics in integrated aquaculture-hydroponics systems. Aquaculture 160:215–237

    CAS  Article  Google Scholar 

  25. Vrhovšek D, Kukanja V, Bulc T (1996) Constructed wetland (CW) for industrial waste water treatment. Water Res 30:2287–2292

    Article  Google Scholar 

  26. Waghmode T, Kurade M, Khandare R, Govindwar S (2011) A sequential aerobic/microaerophilic decolorization of sulfonated mono azo dye Golden Yellow HER by microbial consortium GG-BL. Int Biodet Biodeg 65:1024–1034

    CAS  Article  Google Scholar 

  27. Zhang X, Flurkey W (1997) Phenol oxidase in Portabella mushrooms. J Food Sci 62:97–100

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanjay P. Govindwar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khandare, R.V., Watharkar, A.D., Kabra, A.N. et al. Development of a low-cost, phyto-tunnel system using Portulaca grandiflora and its application for the treatment of dye-containing wastewaters. Biotechnol Lett 36, 47–55 (2014). https://doi.org/10.1007/s10529-013-1324-1

Download citation

Keywords

  • Decolorization
  • Dyes
  • Phytoremediation
  • Phyto-tunnel
  • Portulaca grandiflora
  • Textile effluent
  • Toxicity