Skip to main content
Log in

Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Attachments of Acidithiobacillus ferrooxidans ATCC 23270 onto elemental sulfur, quartz and complex chalcopyrite were investigated by analysis of its extracellular polymeric substances as well as applying Langmuir and Freundlich equations. The two equations fitted the adsorption equilibrium data with significant correlation coefficient over 0.9. This indicated that bacterial attachment is complicated and involves Langmuir and Freundlich characterizations. Sulfur-grown cells showed the highest affinity for the three solid substrates. The investigated complex chalcopyrite possessed a higher maximum adsorption capacity for A. ferrooxidans than elemental sulfur or quartz. The Freundlich fitting parameters suggested that quartz had a weaker adsorption capacity and smaller adsorption areas than elemental sulfur or the complex chalcopyrite. It is not the content of total carbohydrates or proteins in EPS but their ratios that determine the affinity differences between cells and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adav SS, Lee DJ, Lai JY (2009) Proteolytic activity in stored aerobic granular sludge and structural integrity. Bioresour Technol 100:68–73

    Article  PubMed  CAS  Google Scholar 

  • Africa CJ, Harrison ST, Becker M, Hille RP (2010) In situ investigation and visualisation of microbial attachment and colonisation in a heap bioleach environment: the novel biofilm reactor. Miner Eng 23:486–491

    Article  CAS  Google Scholar 

  • Aksu Z, Akpinar D (2001) Competitive biosorption of phenol and chromium (VI) from binary mixtures onto dried anaerobic activated sludge. Biochem Eng J 7:183–193

    Article  CAS  Google Scholar 

  • Coram-Uliana NJ, Van Hille RP, Kohr WJ, Harrison ST (2006) Development of a method to assay the microbial population in heap bioleaching operations. Hydrometallurgy 83:237–244

    Article  CAS  Google Scholar 

  • Deepatana A, Tang J, Valix M (2006) Comparative study of chelating ion exchange resins for metal recovery from bioleaching of nickel laterite ores. Miner Eng 19:1280–1289

    Article  CAS  Google Scholar 

  • Delgado M, Toledo H, Jerez CA (1998) Molecular cloning, sequencing, and expression of a chemoreceptor gene from Leptospirillum ferrooxidans. Appl Environ Microbiol 64:2380–2385

    PubMed  CAS  Google Scholar 

  • Delgado M, Toledo H, Jerez C (1999) Molecular characterization of a chemotactic receptor from Leptospirillum ferrooxidans. Proc Metal 9:69–78

    Article  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    PubMed  CAS  Google Scholar 

  • Ghauri AM, Okibe N, Johnson BD (2007) Attachment of acidophilic bacteria to solid surfaces: the significance of species and strain variations. Hydrometallurgy 85:72–80

    Article  CAS  Google Scholar 

  • Harneit K, Göksel A, Kock D, Klock JH, Gehrke T, Sand W (2006) Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254

    Article  CAS  Google Scholar 

  • Jerez C (2001) Chemotactic transduction in biomining microorganisms. Hydrometallurgy 59(2):347–356

    Article  CAS  Google Scholar 

  • Kinzler K, Gehrke T, Telegdi J, Sand W (2003) Bioleaching—a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy 71:83–88

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Ohmura N, Kitamura K, Saiki H (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl Environ Microbiol 59:4044–4050

    PubMed  CAS  Google Scholar 

  • Ostrowski M, Skłodowska A (1993) Bacterial and chemical leaching pattern on copper ores of sandstone and limestone type. World J Microbiol Biotechnol 19:328–331

    Article  Google Scholar 

  • Pagnanelli F, Esposito A, Toro L, Veglio F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: langmuir-type empirical model. Water Res 37:627–633

    Article  PubMed  CAS  Google Scholar 

  • Porro S, Ramirez S, Reche C, Curutchet G, Alonso-Romanowski S, Donati E (1997) Bacterial attachment: its role in bioleaching processes. Proc Biochem 32:573–578

    Article  CAS  Google Scholar 

  • Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70:4491–4498

    Article  PubMed  Google Scholar 

  • Rodriguez-Leiva M, Tributsch H (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149:401–405

    Article  CAS  Google Scholar 

  • Rohwerder T, Sand W (2007) Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Netherlands, pp 35–58

    Chapter  Google Scholar 

  • Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol 157:49–56

    Article  PubMed  CAS  Google Scholar 

  • Sand W, Gerke T, Hallmann R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in) direct attack mechanism—a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966

    Article  CAS  Google Scholar 

  • Sharma P, Das A, Hanumantha Rao K, Forssberg K (2003) Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometallurgy 71:285–292

    Article  CAS  Google Scholar 

  • Song J, Lin J, Ren Y (2010) Competitive adsorption of binary mixture of Leptospirillum ferriphilum and Acidithiobacillus caldus onto pyrite. Biotechnol Bioprocess Eng 15:923–930

    Article  CAS  Google Scholar 

  • Tan S, Chen M (2012) Early stage adsorption behaviour of Acidithiobacillus ferrooxidans on minerals I: an experimental approach. Hydrometallurgy 119–120:87–94

    Article  Google Scholar 

  • Van Loosdrecht M, Lyklema J, Norde W, Zehnder A (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87

    PubMed  Google Scholar 

  • Watling H (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108

    Article  CAS  Google Scholar 

  • Yu RL, Ou Y, Tan JX, Wu FD, Sun J, Miao L, Zhong DL (2011) Effect of EPS on adhesion of Acidithiobacillus ferrooxidans on chalcopyrite and pyrite mineral surfaces. Trans Nonferrous Metal Soc 21:407–412

    Article  CAS  Google Scholar 

  • Zhang L, Feng X, Zhu N, Chen J (2007) Role of extracellular protein in the formation and stability of aerobic granules. Enzyme Microb Technol 41(5):551–557

    Article  CAS  Google Scholar 

  • Zhulin IB (2001) The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol 45:157–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (20803094), the Postdoctoral Foundation of China (2012T50710), the Science and Technology Program of Hunan Province (2011RS4068). We would like to thank Dr. Paulina Uribe for her revision for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Xian Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, LX., Shen, Z., Vargas, T. et al. Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations. Biotechnol Lett 35, 2129–2136 (2013). https://doi.org/10.1007/s10529-013-1316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1316-1

Keywords

Navigation