Skip to main content
Log in

Characterization of a recombinant mannobiose 2-epimerase from Spirochaeta thermophila that is suggested to be a cellobiose 2-epimerase

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A purified recombinant enzyme from Spirochaeta thermophila, that is suggested to be a cellobiose 2-epimerase, was a 47 kDa monomer with a specific activity of 29.2 U min−1 for mannobiose. The epimerization activity of the recombinant enzyme for mannobiose was maximal at pH 7.0 and 60 °C with a half-life of 124 h. The enzyme exhibited a higher epimerization activity for mannose or the mannose moiety at the reducing end of β- and α-1,4-glycosyl-mannose than for glucose or the glucose moiety of β- and α-1,4-glycosyl-glucose. The enzyme was identified as a mannobiose 2-epimerase by evaluating its substrate specificity with not only glucose-containing sugars but also mannose-containing sugars. The activities of the reported cellobiose 2-epimerases from Caldicellulosiruptor saccharolyticus, Dictyoglomus turgidum and Ruminococcus marinus for mannobiose were higher than those for cellobiose, strongly suggesting that these enzymes are not cellobiose 2-epimerases but are mannobiose 2-epimerases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ito S, Hamada S, Yamaguchi K, Umene S, Ito H, Matsui H, Ozawa T, Taguchi H, Watanabe J, Wasaki J (2007) Cloning and sequencing of the cellobiose 2-epimerase gene from an obligatory anaerobe, Ruminococcus albus. Biochem Biophys Res Commun 360:640–645

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Taguchi H, Hamada S, Kawauchi S, Ito H, Senoura T, Watanabe J, Nishimukai M, Matsui H (2008) Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme. Appl Microbiol Biotechnol 79:433–441

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Hamada S, Ito H, Matsui H, Ozawa T, Taguchi H (2009) Site-directed mutagenesis of possible catalytic residues of cellobiose 2-epimerase from Ruminococcus albus. Biotechnol Lett 31:1065–1071

    Article  PubMed  CAS  Google Scholar 

  • Kawahara R, Saburi W, Odaka R, Taguchi H, Ito S, Mori H, Matsui H (2012) Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, beta-1,4-mannooligosaccharide phosphorylase. J Biol Chem 287:42389–42399

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Oh DK (2012) Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresour Technol 104:668–672

    Article  PubMed  CAS  Google Scholar 

  • Kim JE, Kim YS, Kang LW, Oh DK (2012) Characterization of a recombinant cellobiose 2-epimerase from Dictyoglomus turgidum that epimerizes and isomerizes beta-1,4- and alpha-1,4-gluco-oligosaccharides. Biotechnol Lett 34:2061–2068

    Article  PubMed  CAS  Google Scholar 

  • Lee YC, Chien HC, Hsu WH (2007a) Production of N-acetyl-d-neuraminic acid by recombinant whole cells expressing Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase and Escherichia coli N-acetyl-d-neuraminic acid lyase. J Biotechnol 129:453–460

    Article  PubMed  CAS  Google Scholar 

  • Lee YC, Wu HM, Chang YN, Wang WC, Hsu WH (2007b) The central cavity from the (alpha/alpha)6 barrel structure of Anabaena sp. CH1 N-acetyl-d-glucosamine 2-epimerase contains two key histidine residues for reversible conversion. J Mol Biol 367:895–908

    Article  PubMed  CAS  Google Scholar 

  • Maru I, Ohta Y, Murata K, Tsukada Y (1996) Molecular cloning and identification of N-acyl-d-glucosamine 2-epimerase from porcine kidney as a renin-binding protein. J Biol Chem 271:16294–16299

    Article  PubMed  CAS  Google Scholar 

  • Ojima T, Saburi W, Sato H, Yamamoto T, Mori H, Matsui H (2011) Biochemical characterization of a thermophilic cellobiose 2-epimerase from a thermohalophilic bacterium, Rhodothermus marinus JCM9785. Biosci Biotechnol Biochem 75:2162–2168

    Article  PubMed  CAS  Google Scholar 

  • Park CS, Kim JE, Choi JG, Oh DK (2011) Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Appl Microbiol Biotechnol 92:1187–1196

    Article  PubMed  CAS  Google Scholar 

  • Senoura T, Taguchi H, Ito S, Hamada S, Matsui H, Fukiya S, Yokota A, Watanabe J, Wasaki J (2009) Identification of the cellobiose 2-epimerase gene in the genome of Bacteroides fragilis NCTC 9343. Biosci Biotechnol Biochem 73:400–406

    Article  PubMed  CAS  Google Scholar 

  • Senoura T, Ito S, Taguchi H, Higa M, Hamada S, Matsui H, Ozawa T, Jin S, Watanabe J, Wasaki J (2011) New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase. Biochem Biophys Res Commun 408:701–706

    Article  PubMed  CAS  Google Scholar 

  • Tabata K, Koizumi S, Endo T, Ozaki A (2002) Production of N-acetyl-d-neuraminic acid by coupling bacteria expressing N-acetyl-d-glucosamine 2-epimerase and N-acetyl-d-neuraminic acid synthetase. Enzym Microb Technol 30:327–333

    Article  CAS  Google Scholar 

  • Taguchi H, Senoura T, Hamada S, Matsui H, Kobayashi Y, Watanabe J, Wasaki J, Ito S (2008) Cloning and sequencing of the gene for cellobiose 2-epimerase from a ruminal strain of Eubacterium cellulosolvens. FEMS Microbiol Lett 287:34–40

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Takahashi K, Kaneko T, Ogasawara H, Shindo S, Kobayashi M (1999) Human renin-binding protein is the enzyme N-acetyl-d-glucosamine 2-epimerase. J Biochem 125:348–353

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant (No. 2012R1A1A1010321) of the National Research Foundation of Korea (NRF) funded by the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Kun Oh.

Additional information

Chang-Su Park and Jung-Eun Kim have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, CS., Kim, JE., Lee, SH. et al. Characterization of a recombinant mannobiose 2-epimerase from Spirochaeta thermophila that is suggested to be a cellobiose 2-epimerase. Biotechnol Lett 35, 1873–1880 (2013). https://doi.org/10.1007/s10529-013-1267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1267-6

Keywords

Navigation