Skip to main content
Log in

Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A codon-optimized Escherichia coli appA phytase gene was synthesized and expressed in Pichia pastoris. Two residue substitutions (Q258N, Q349N) were sequentially introduced to enhance its glycosylation activity. Secretion of appA-Q258N/Q349N was approx. 0.3 mg ml−1 and enzyme activity reached 1,030 U ml−1. Purified appA-Q258N/Q349N had a specific activity of 3,137 U mg−1 with an MW of approx. 53 kDa. Compared with appA-WT, appA-Q258N/Q349N showed over 40 % enhancement in thermostability (85 °C for 10 min) and 4–5 °C increases in the melting temperatures (Tm). The Km and Kcat of appA-Q258N/Q349N were 0.43 mM and 3,058 s−1, respectively, which are similar with that of appA-WT. The mutant appA-Q258N/Q349N obtained in this study could be used for the large-scale commercial production of phytase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bause E (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209(2):331–336

    PubMed  CAS  Google Scholar 

  • Haraguchi M, Yamashiro S, Furukawa K, Takamiya K, Shiku H (1995) The effects of the site-directed removal of N-glycosylation sites from beta-1,4-N-acetylgalactosaminyltransferase on its function. Biochem J 312(Pt 1):273–280

    PubMed  CAS  Google Scholar 

  • Hoffmann D, Florke H (1998) A structural role for glycosylation: lessons from the hp model. Fold Des 3(5):337–343

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Luo H, Wang Y, Fu D, Shao N, Yang P, Meng K, Yao B (2009) Novel low-temperature-active phytase from Erwinia carotovora var. carotovota ACCC 10276. J Microbiol Biotechnol 19(10):1085–1091

    PubMed  CAS  Google Scholar 

  • Imberty A, Perez S (1995) Stereochemistry of the N-glycosylation sites in glycoproteins. Protein Eng 8(7):699–709

    Article  PubMed  CAS  Google Scholar 

  • Imperiali B, Rickert KW (1995) Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci USA 92(1):97–101

    Article  PubMed  CAS  Google Scholar 

  • Lei XG, Stahl CH (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biotechnol 57(4):474–481

    Article  PubMed  CAS  Google Scholar 

  • Lim D, Golovan S, Forsberg CW, Jia Z (2000) Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Biol 7(2):108–113

    Article  PubMed  CAS  Google Scholar 

  • Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14(2):103–114

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez E, Wood ZA, Karplus PA, Lei XG (2000) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382(1):105–112

    Article  PubMed  CAS  Google Scholar 

  • Romanos M (1995) Advances in the use of Pichia pastoris for high-level gene expression. Curr Opin Biotechnol 6:527–533

    Article  CAS  Google Scholar 

  • Wodzinski RJ, Ullah AH (1996) Phytase. Adv Appl Microbiol 42:263–302

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Pasamontes L, Remy R, Kohler J, Kusznir E, Gadient M, Muller F, van Loon A (1998) Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase. Appl Environ Microbiol 64(11):4446–4451

    PubMed  CAS  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Guo MJ, Zhang SL (2004) Isolation, characterization, and molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris. J Biochem Mol Biol 37(3):282–291

    Article  PubMed  CAS  Google Scholar 

  • Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112(1):1–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the “National Natural Science Foundation of China” (No. 31071924, 31272100), the “Natural Science Foundation of Shanxi Province” (2010011040-1) and the “Shanxi Scholarship Council of China”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Hua Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, MZ., Wang, X., Wang, W. et al. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol Lett 35, 1669–1676 (2013). https://doi.org/10.1007/s10529-013-1255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1255-x

Keywords

Navigation