Skip to main content
Log in

Addition of Co2+ to culture medium decides the functional expression of a recombinant nitrile hydratase in Escherichia coli

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A nitrile hydratase (NHase) gene from Aurantimonas manganoxydans, cloned and expressed in Escherichia coli, gave an enzyme that efficiently hydrated 3-cyanopyridine to nicotinamide with high thermal stability. We have now found that adding Co2+ at 0.1 mM to LB medium was essential for production of an active enzyme. However, ≥0.3 mM Co2+ inhibited the growth of host cells in LB medium and decreased the production of the recombinant NHase. Furthermore, β-mercaptoethanol promoted regeneration of the Co2+-defective apoenzyme in vitro possibly by breaking a key disulfide bond thereby promoting the incorporation of Co2+ into the apoenzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brennan BA, Alms G, Nelson M, Dumey LT, Scarrow RC (1996) Nitrile hydratase from Rhodococcus rhodochrous J1 contains a non-corrin cobalt ion with two sulfur ligands. J Am Chem Soc 118:9194–9195. doi:10.1021/ja961920d

    Article  CAS  Google Scholar 

  • Gupta N, Balomajumder C, Agarwal VK (2010) Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Haz Mater 176:1–13. doi:10.1016/j.jhazmat.2009.11.038

    Article  CAS  Google Scholar 

  • Hashimoto K, Suzuki H, Taniguchi K, Noguchi T, Odaka M (2008) Catalytic mechanism of nitrile hydratase proposed by time-resolved X-ray crystallography using a novel substrate, tert-butylisonitrile. J Biol Chem 283:36617–36623. doi:10.1074/jbc.M806577200

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Padmakumar R, Oriel P (2001) Cobalt activation of Bacillus BR449 thermostable nitrile hydratase expressed in Escherichia coli. Appl Biochem Biotech 91–93:597–603

    Article  Google Scholar 

  • Majtan T, Frerman FE, Kraus JP (2011) Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation. Biometals 24:335–347. doi:10.1007/s10534-010-9400-7

    Article  PubMed  CAS  Google Scholar 

  • Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun 288:1169–1174. doi:10.1006/bbrc.2001.5897

    Article  PubMed  CAS  Google Scholar 

  • Miyanaga A, Fushinobu S, Ito K, Shoun H, Wakagi T (2004) Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding. Eur J Biochem 271:429–438. doi:10.1046/j.1432-1033.2003.03943.x

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Nojiri M, Nakayama H, Odaka M, Yohha M, Dohmae N, Takio K, Nagamune T, Endo I (2000) Post-translational modification is essential for catalytic activity of nitrile hydratase. Protein Sci 9:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Nogiri M, Nakayama H, Odaka M, Yohda M, Takio K, Endo I (2000) Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771. FEBS Lett 465:173–177

    Article  Google Scholar 

  • Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–741. doi:10.1016/j.biotechadv.2010.05.020

    Article  PubMed  CAS  Google Scholar 

  • Ranquet C, Ollagnier-de-Choudens S, Loiseau L, Barrans F, Fontecave M (2007) Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins. J Biol Chem 282:30442–30451. doi:10.1074/jbc.M702519200

    Article  PubMed  CAS  Google Scholar 

  • Thannhauser TW, Konishi Y, Scheraga HA (1984) Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. Anal Biochem 138:181–188

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka Y, Hashimoto K, Ohtaki A, Noguchi K, Yohda M, Odaka M (2010) Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase. J Biol Inorg Chem 15:655–665. doi:10.1007/s00775-010-0632-3

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Hashimoto Y, Shiraki K, Kobayashi M (2008) Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci USA 105:14849–14854. doi:10.1073/pnas.0803428105

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Hashimoto Y, Kobayashi M (2009) Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal ligand cysteine residues and insertion of cobalt. J Biol Chem 284:14930–14938. doi:10.1074/jbc.M808464200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21206024), and Zhejiang Provincial Natural Science Foundation of China (No. LQ12B06007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Pei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, X., Wang, Q., Li, C. et al. Addition of Co2+ to culture medium decides the functional expression of a recombinant nitrile hydratase in Escherichia coli . Biotechnol Lett 35, 1419–1424 (2013). https://doi.org/10.1007/s10529-013-1215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1215-5

Keywords

Navigation