Biotechnology Letters

, Volume 35, Issue 5, pp 685–688 | Cite as

Enantioselective synthesis of (S)-2-cyano-2-methylpentanoic acid by nitrilase

  • Toyokazu Yoshida
  • Koichi Mitsukura
  • Takuya Mizutani
  • Ryo Nakashima
  • Yasuyo Shimizu
  • Hiroshi Kawabata
  • Toru Nagasawa
Original Research Paper

Abstract

The nitrilase gene of Rhodococcus rhodochrous J1 was expressed in Escherichia coli using the expression vector, pKK223-3. The recombinant E. coli JM109 cells hydrolyzed enantioselectively 2-methyl-2-propylmalononitrile to form (S)-2-cyano-2-methylpentanoic acid (CMPA) with 96 % e.e. Under optimized conditions, 80 g (S)-CMPA l−1 was produced with a molar yield of 97 % at 30 °C after a 24 h without any by-products.

Keywords

Nitrilase Malononitrile Enantioselective hydrolysis Rhodococcus 

References

  1. Bayer S, Birkemeyer C, Ballschmiter M (2011) A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol 89:91–98PubMedCrossRefGoogle Scholar
  2. Conway EJ, Berne A (1933) An absorption apparatus for the micro-determination of certain volatile substances. Biochem J 27:419–429PubMedGoogle Scholar
  3. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159PubMedCrossRefGoogle Scholar
  4. Kobayashi M, Nagasawa T, Yamada H (1989) Nitrilase of Rhodococcus rhodochrous J1: purification and characterization. Eur J Biochem 182:349–356PubMedCrossRefGoogle Scholar
  5. Kobayashi M, Komeda H, Yanaka N, Nagasawa T, Yamada H (1992) Nitrilase from Rhodococcus rhodochrous J1: sequencing and overexpression of the gene and identification of an essential cysteine residue. J Biol Chem 267:20746–20751PubMedGoogle Scholar
  6. Moretto A, Peggion C, Formaggio F, Crisma M, Toniolo C, Piazza C, Kaptein B, Broxterman QB, Ruiz I, Díaz-de-Villegas MD, Galvez JA, Cativiela C (2000) (αMe)Nva: stereoselective syntheses and preferred conformation of selected model peptides. J Peptide Res 56:283–297CrossRefGoogle Scholar
  7. Nagasawa T, Yamada H (1989) Microbial transformation of nitriles. Trends Biotechnol 7:153–158CrossRefGoogle Scholar
  8. Nagasawa T, Kobayashi M, Yamada H (1988) Optimum culture conditions for the production of benzonitrilase by Rhodococcus rhodochrous J1. Arch Microbiol 150:89–94CrossRefGoogle Scholar
  9. Nagasawa T, Wieser M, Nakamura T, Iwahara H, Yoshida T, Gekko K (2000) Nitrilase of Rhodococcus rhodochrous J1: conversion into the active form by subunit association. Eur J Biochem 267:138–144PubMedCrossRefGoogle Scholar
  10. Thuku RN, Weber BW, Varsani A, Sewell BT (2007) Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J 274:2099–2108PubMedCrossRefGoogle Scholar
  11. Vejttech V, Sveda O, Kaplan O, Prikrylová V, Elisáková V, Himl M, Kubác D, Pelantová H, Kuzma M, Kren V, Martínková L (2007) Biotransformation of heterocyclic dinitriles by Rhodococcus erythropolis and fungal nitrilases. Biotechnol Lett 29:1119–1124CrossRefGoogle Scholar
  12. Wu ZL, Li ZY (2003) Enantioselective biotransformation of α,α-disubstituted dinitriles to the corresponding 2-cyanoacetamides using Rhodococcus sp. CGMCC0497. Tetrahedron Asymm 14:2133–2142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Toyokazu Yoshida
    • 1
  • Koichi Mitsukura
    • 1
  • Takuya Mizutani
    • 1
  • Ryo Nakashima
    • 1
  • Yasuyo Shimizu
    • 1
  • Hiroshi Kawabata
    • 2
  • Toru Nagasawa
    • 1
  1. 1.Department of Biomolecular ScienceGifu UniversityGifuJapan
  2. 2.Biotechnology Laboratory, Mitsubishi Chemical Group Science and Technology Research Center, Inc.YokohamaJapan

Personalised recommendations