Skip to main content

Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells

An Erratum to this article was published on 07 June 2013

Abstract

A novel hydroxyapatite/regenerated silk fibroin scaffold was prepared and investigated for its potential to enhance both osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells in vitro. Approx. 12.4 ± 0.06 % (w/w) hydroxyapatite was deposited onto the scaffold, and cell viability and DNA content were significantly increased (18.5 ± 0.6 and 33 ± 1.2 %, respectively) compared with the hydroxyapatite scaffold after 14 days. Furthermore, alkaline phosphatase activity in the novel scaffold increased 41 ± 2.5 % after 14 days compared with the hydroxyapatite scaffold. The data indicate that this novel hydroxyapatite/regenerated silk fibroin scaffold has a positive effect on osteoinductivity and osteoconductivity, and may be useful for bone tissue engineering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    PubMed  Article  CAS  Google Scholar 

  • Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DL, Vunjak-Novakovic G (2011) Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials 32(11):2812–2820

    PubMed  Article  CAS  Google Scholar 

  • Cao Z, Chen X, Yao J, Huang L, Shao Z (2007) The preparation of regenerated silk fibroin microspheres. Soft Matter 3(7):910–915

    Article  CAS  Google Scholar 

  • Chen X, Knight DP, Shao Z (2009) [Small beta]-turn formation during the conformation transition in silk fibroin. Soft Matter 5(14):2777–2781

    Article  CAS  Google Scholar 

  • Fiedler J, Röderer G, Günther K-P, Brenner RE (2002) BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem 87(3):305–312

    PubMed  Article  CAS  Google Scholar 

  • Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable Polymer Scaffolds for Tissue Engineering. Nat Biotech 12(7):689–693

    Article  CAS  Google Scholar 

  • Jin H-J, Chen J, Karageorgiou V, Altman GH, Kaplan DL (2004) Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25(6):1039–1047

    PubMed  Article  CAS  Google Scholar 

  • Kim HJ, Kim U-J, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42(6):1226–1234

    PubMed  Article  CAS  Google Scholar 

  • Na K, Sw Kim, Sun BK, Woo DG, Yang HN, Chung HM, Park KH (2007) Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials 28(16):2631–2637

    PubMed  Article  CAS  Google Scholar 

  • Shao XX, Hutmacher DW, Ho ST, Goh JCH, Lee EH (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27(7):1071–1080

    PubMed  Article  CAS  Google Scholar 

  • Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28(22):3338–3348

    PubMed  Article  CAS  Google Scholar 

  • Zhou G, Shao Z, Knight DP, Yan J, Chen X (2009) Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Adv Mater 21(3):366–370

    Article  CAS  Google Scholar 

  • Zhou J, Fang T, Wen J, Shao Z, Dong J (2011) Silk coating on poly(e-caprolactone) microspheres for the delayed release of vancomycin. J Microencapsul 28(2):99–107

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from the Young Project of National Natural Science Foundation of China (81000816), 973 Project from the Ministry of Science and Technology of China (No. 2009CB930000), and the Project of Shanghai Municipal Science and Technology Commission (11JC1401700 and 12ZR1415800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyi Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, J., Hao, W., Li, Y. et al. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells. Biotechnol Lett 35, 657–661 (2013). https://doi.org/10.1007/s10529-012-1121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1121-2

Keywords

  • Bone tissue engineering
  • Hydroxyapatite
  • Osteoconductivity
  • Osteoinductivity
  • Regenerated silk fibroin