Skip to main content
Log in

Soy peptides enhance yeast cell growth at low temperatures

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Purpose of work

To elucidate the mechanisms of high performance by soy peptides during yeast fermentation in low temperature stress conditions and to identify a type of soy peptide that is suitable for yeast fermentation at low temperatures during brewing.

The growth of a tryptophan auxotrophic yeast strain in a medium containing soy peptide (SP) was compared with that in a medium containing an equivalent composition of free amino acid mixture. At low temperature (10 °C), the cells grew in the medium containing SP but not in the medium containing the free amino acid mixture. Free tyrosine and phenylalanine inhibited the uptake of free tryptophan at low temperatures whereas most of the tyrosine and phenylalanine were present as oligopeptides in SP. The cells could transport free tryptophan without being inhibited by free tyrosine and phenylalanine at low temperatures in the medium containing SPs. Soy peptide-AM that lacks free tyrosine and phenylalanine was more effective in promoting cell growth compared with a highly hydrolyzed version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe F (2007) Exploration of the effects of High Hydrostatic pressure on Microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 71:2347–2357

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 23:7566–7584

    Article  PubMed  CAS  Google Scholar 

  • Ayrapaa T (1965) The formation of phenethyl alcohol from 14C-labelled phenylalanine. J Inst Brew 71:341–347

    CAS  Google Scholar 

  • Cai H, Kauffman S, Naider F, Becker JM (2006) Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae. Genetics 172:1459–1476

    Article  PubMed  CAS  Google Scholar 

  • Homann OR, Cai H, Becker JM, Lindquit SL (2005) Harnessing natural diversity to probe metabolic pathways. Plos Genet 1:715–729

    Article  CAS  Google Scholar 

  • Horak J (1997) Yeast nutrient transporters. Biochim Biophys Acta 1331:41–79

    Article  PubMed  CAS  Google Scholar 

  • Hori G, Wang MF, Chan YC, Komatsu T, Wong Y, Chen TH, Yamamoto K, Nagaoka S, Yamamoto S (2001) Soy protein hydrolyzate with bound phospholipids reduces serum cholesterol levels in hypercholesterolemic adult male volunteers. Biosci Biotechnol Biochem 65:72–78

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  • Ito K, Hikida A, Kitagawa S, Misaka T, Abe K, Kawarasaki Y (2012) Soy peptides enhance heterologous membrane protein expression during the exponential growth phase of Saccharomyces cerevisiae. Biosci Biotechnol Biochem 76:628–631

    Article  PubMed  CAS  Google Scholar 

  • Izawa S, Ikeda K, Takahashi N, Inoue Y (2007) Improvement of tolerance to freeze-thaw stress of baker’s yeast by cultivation with soy peptides. Appl Microbiol Biothechnol 75:533–537

    Article  CAS  Google Scholar 

  • Jones M, Pierce JS (1964) Absorption of amino acids from wort by yeasts. J Inst Brew 70:307–315

    CAS  Google Scholar 

  • Kaino T, Tateiwa T, Mizukami-Murata S, Shima J, Takagi H (2008) Self-cloning baker’s yeasts that accumulate proline enhance freeze tolerance in doughs. Appl Environ Microbiol 74:5845–5849

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa S, Mukai N, Furukawa Y, Adachi K, Mizuno A, Iefuji H (2008) Effect of soy peptide on brewing beer. J Biosci Bioeng 105:360–366

    Article  PubMed  CAS  Google Scholar 

  • Lekkas C, Stewart GG, Hill AE, Taidi B, Hodgson J (2007) Elucidation of the role of nitrogenous wort components in yeast fermentation. J Inst Brew 113:3–8

    Article  CAS  Google Scholar 

  • Maebuchi M, Samoto M, Kohno M, Ito R, Koikeda T, Hirotsuka M, Nakabou Y (2007) Improvement in the intestinal absorption of soy protein by enzymatic digestion to oligopeptide in healthy adult men. Food Sci Technol Res 13:45–53

    Article  CAS  Google Scholar 

  • Maebuchi M, Yamaguchi N, Huruya S (2011) Soy peptide as functional food component. Med Biol 155:566–576

    CAS  Google Scholar 

  • Nagayama A, Kato C, Abe F (2004) The N- and C-terminal mutations in tryptophan permease Tat2 confer cell growth in Saccharomyces cerevisiae under high-pressure and low-temperature conditions. Extremophiles 8:143–149

    Article  PubMed  CAS  Google Scholar 

  • Nishimura A, Kotani T, Sasano Y, Takagi H (2010) An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 10:687–698

    Article  PubMed  CAS  Google Scholar 

  • Patterson CA, Ingledew WM (1999) Utilization of peptides by a lager brewing yeast. J Am Soc Brew Chem 57:1–8

    CAS  Google Scholar 

  • Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Hall MN, Koller A (1994) Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol Cell Biol 14:6597–6606

    PubMed  CAS  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccaromyces cerevisiae. Genetics 122:19–27

    PubMed  CAS  Google Scholar 

  • Takahashi K (2005) The taste produced by the yeast of “Super Dry”. Seibutsu-Kogaku 83:532–533 (in Japanese)

    CAS  Google Scholar 

  • Wiles AM, Cai H, Naider F, Becker JM (2006) Nutrient regulation of oligopeptide transport in Saccharomyces cerevisiae. Microbiology 152:3133–3145

    Article  PubMed  CAS  Google Scholar 

  • Yokota H, Sahara H, Koshino S (1993) Fractionation and quantitation of oligopeptides in beer and wort. J Am Soc Brew Chem 51:54–57

    Google Scholar 

Download references

Acknowledgments

We are sincerely grateful to Prof. Hideki Aoyagi at University of Tsukuba for discussion and enormous support. We thank Mr. Ryotaro Sato and Ms. Kanako Adachi for valuable discussions and technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayuri Kitagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, S., Sugiyama, M., Motoyama, T. et al. Soy peptides enhance yeast cell growth at low temperatures. Biotechnol Lett 35, 375–382 (2013). https://doi.org/10.1007/s10529-012-1088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1088-z

Keywords

Navigation