Advertisement

Biotechnology Letters

, Volume 35, Issue 1, pp 39–45 | Cite as

In vitro selection of peptide aptamers with affinity to single-wall carbon nanotubes using a ribosome display

  • Zha Li
  • Takanori Uzawa
  • Takashi Tanaka
  • Akira Hida
  • Koji Ishibashi
  • Hiromichi Katakura
  • Eiry Kobatake
  • Yoshihiro Ito
Original Research Paper

Abstract

A ribosome display from a diverse random library was applied for selecting peptide aptamers with high binding affinity to single-wall carbon nanotubes (SWCNTs). The selected peptide aptamer bound to and solubilized SWCNTs more strongly than did the peptide aptamer selected by a phage display method reported previously, and more strongly than other commonly used organic surfactants. The fluorescence spectrum of this aptamer showed a red shift upon interaction with SWCNTs but circular dichroism spectroscopy did not show any significant difference between the presence or absence of SWCNT binding.

Keywords

Aptamer In vitro selection Peptide Ribosome display Single-wall carbon nanotubes 

Supplementary material

10529_2012_1049_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Akasaka T, Watari F (2008) Carbohydrate coating of carbon nanotubes for biological recognition. Fuller Nanotub Carbon Nanostruct 16(2):114–125CrossRefGoogle Scholar
  2. Arrais A, Diana E, Pezzini D, Rossetti R, Boccaleri E (2006) A fast effective route to pH-dependent water-dispersion of oxidized single-walled carbon nanotubes. Carbon 44(3):587–590CrossRefGoogle Scholar
  3. Chattopadhyay A, Rawat SS, Kelkar DA, Ray S, Chakrabarti A (2003) Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach. Protein Sci 12(11):2389–2403PubMedCrossRefGoogle Scholar
  4. Deshpande MS, Mazumdar S (2012) Sequence specific association of tryptic peptides with multiwalled carbon nanotubes: effect of localization of hydrophobic residues. Biomacromolecules 13(5):1410–1419PubMedCrossRefGoogle Scholar
  5. Ejima H, Matsumiya K, Yui H, Serizawa T (2011) Dispersion of carbon nanotubes in water by noncovalent wrapping with peptides screened by phage display. Chem Lett 40(8):880–882CrossRefGoogle Scholar
  6. Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5(6):443–450PubMedCrossRefGoogle Scholar
  7. Gold L (2001) mRNA display: diversity matters during in vitro selection. Proc Natl Acad Sci 98(9):4825–4826PubMedCrossRefGoogle Scholar
  8. Green AA, Hersam MC (2011) Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv Mater 23(19):2185–2190PubMedCrossRefGoogle Scholar
  9. Grigoryan G, Kim YH, Acharya R, Axelrod K, Jain RM, Willis L, Drndic M, Kikkawa JM, DeGrado WF (2011) Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science 332(6033):1071–1076PubMedCrossRefGoogle Scholar
  10. Hanes J, Pluckthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci 94(10):4937–4942PubMedCrossRefGoogle Scholar
  11. Hara S, Liu M, Wang W, Xu M, Li Z, Ito Y (2011) Stabilized ribosome display for in vitro selection. In: Jackson RH, Douthwaite JA (eds) Methods in Molecular Biology, vol 805. Humana Press, Cambridge, pp 59–73Google Scholar
  12. Heller DA, Pratt GW, Zhang JQ, Nair N, Hansborough AJ, Boghossian AA, Reuel NF, Barone PW, Strano MS (2011) Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics. Proc Natl Acad Sci 108(21):8544–8549PubMedCrossRefGoogle Scholar
  13. Hertel T, Hagen A, Talalaev V, Arnold K, Hennrich F, Kappes M, Rosenthal S, McBride J, Ulbricht H, Flahaut E (2005) Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett 5(3):511–514PubMedCrossRefGoogle Scholar
  14. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273CrossRefGoogle Scholar
  15. Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110(9):5366–5397PubMedCrossRefGoogle Scholar
  16. Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2. doi: 10.1038/ncomms1313 Google Scholar
  17. Nemoto N, MiyamotoSato E, Husimi Y, Yanagawa H (1997) In vitro virus: bonding of mRNA bearing puromycin at the 3′-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414(2):405–408PubMedCrossRefGoogle Scholar
  18. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342(3–4):265–271CrossRefGoogle Scholar
  19. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci 94(23):12297–12302PubMedCrossRefGoogle Scholar
  20. Su Z, Mui K, Daub E, Leung T, Honek J (2007) Single-walled carbon nanotube binding peptides: probing tryptophan’s importance by unnatural amino acid substitution. J Phys Chem B 111(51):14411–14417PubMedCrossRefGoogle Scholar
  21. Tomanek D (2008) Advanced topics in the synthesis, structure, properties and applications—Foreword. Top Appl Phys. 111:5–9Google Scholar
  22. Wada A, Sawata SY, Ito Y (2008) Ribosome display selection of a metal-binding motif from an artificial peptide library. Biotechnol Bioengin 101(5):1102–1107CrossRefGoogle Scholar
  23. Wang SQ, Humphreys ES, Chung SY, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang YM, Jagota A (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2(3):196–200PubMedCrossRefGoogle Scholar
  24. Wang W, Hara S, Liu MZ, Aigaki T, Shimizu S, Ito Y (2011) Polypeptide aptamer selection using a stabilized ribosome display. J Biosci Bioengin 112(5):515–517CrossRefGoogle Scholar
  25. Weisman RB, Bachilo SM (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett 3(9):1235–1238CrossRefGoogle Scholar
  26. Yang JT, Wu CSC, Martinez HM (1986) Calculation of protein conformation from circular-dichroism. Method enzymol 130:208–269CrossRefGoogle Scholar
  27. Yu T, Gong YX, Lu TT, Wei L, Li YQ, Mu YG, Chen Y, Liao K (2012) Recognition of carbon nanotube chirality by phage display. RSC Adv 2(4):1466–1476CrossRefGoogle Scholar
  28. Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342PubMedCrossRefGoogle Scholar
  29. Zheng LF, Jain D, Burke P (2009) Nanotube-peptide interactions on a silicon chip. J Phys Chem C 113(10):3978–3985CrossRefGoogle Scholar
  30. Zorbas V, Smith AL, Xie H, Ortiz-Acevedo A, Dalton AB, Dieckmann GR, Draper RK, Baughman RH, Musselman IH (2005) Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J Am Chem Soc 127(35):12323–12328PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Zha Li
    • 1
    • 2
  • Takanori Uzawa
    • 1
  • Takashi Tanaka
    • 3
  • Akira Hida
    • 4
  • Koji Ishibashi
    • 4
  • Hiromichi Katakura
    • 3
  • Eiry Kobatake
    • 2
  • Yoshihiro Ito
    • 1
  1. 1.Nano Medical Engineering LaboratoryRIKEN Advanced Science InstituteWako-shiJapan
  2. 2.Department of Biological InformationGraduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyYokohama-shiJapan
  3. 3.Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST)Tsukuba-shiJapan
  4. 4.Advanced Device LaboratoryRIKEN Advanced Science InstituteWako-shiJapan

Personalised recommendations