Skip to main content
Log in

The yeast hypoxic responses, resources for new biotechnological opportunities

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Recent advances in the knowledge of molecular mechanisms that control the adaptation to low oxygen levels in yeast and their biotechnological applications, including bioproduct synthesis, such as ethanol, glutathione or recombinant proteins, as well as pathogenic virulence, are reviewed. Possible pathways and target genes, which might be of particular interest for the improvement of biotechnological applications, are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramova NE, Cohen BD, Sertil O, Kapoor R, Davies KJ, Lowry CV (2001) Regulatory mechanisms controlling expression of the DAN/TIR mannoprotein genes during anaerobic remodeling of the cell wall in Saccharomyces cerevisiae. Genetics 157:1169–1177

    PubMed  CAS  Google Scholar 

  • Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M (2009) Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 5:e1000612

    Article  PubMed  Google Scholar 

  • Aslett M, Wood V (2006) Gene Ontology annotation status of the fission yeast genome: preliminary coverage approaches 100%. Yeast 23:913–919

    Article  PubMed  CAS  Google Scholar 

  • Bao WG, Guiard B, Fang ZA, Donnini C, Gervais M, Passos FM, Ferrero I, Fukuhara H, Bolotin-Fukuhara M (2008) Oxygen-dependent transcriptional regulator Hap1p limits glucose uptake by repressing the expression of the major glucose transporter gene RAG1 in Kluyveromyces lactis. Eukaryot Cell 11:1895–1905

    Article  Google Scholar 

  • Barker BM, Kroll K, Vödisch M, Mazurie A, Kniemeyer O, Cramer RA (2012) Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genomics 13:e62

    Article  Google Scholar 

  • Baumann K, Maurer M, Dragosits M, Cos O, Ferrer P, Mattanovich D (2008) Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng 100:177–183

    Article  PubMed  CAS  Google Scholar 

  • Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, Ferrer P (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 4:e141

    Article  Google Scholar 

  • Baumann K, Dato L, Graf AB, Frascotti G, Dragosits M, Porro D, Mattanovich D, Ferrer P, Branduardi P (2011) The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris, a comparative analysis. BMC Genomics 12:e218

    Article  Google Scholar 

  • Becerra M, Lombardía-Ferreira LJ, Hauser NC, Hoheisel JD, Tizon B, Cerdán ME (2002) The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol 43:545–555

    Article  PubMed  CAS  Google Scholar 

  • Bien CM, Espenshade PJ (2010) Sterol regulatory element binding proteins in fungi: hypoxic transcription factors linked to pathogenesis. Eukaryot Cell 9:352–359

    Article  PubMed  CAS  Google Scholar 

  • Castro Prego R, Lamas Maceiras M, Soengas P, Carneiro I, González Siso MI, Cerdán ME (2010a) Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 (ORD1) by oxygen levels. A model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation. Biochem J 425:235–243

    Article  CAS  Google Scholar 

  • Castro Prego R, Lamas Maceiras M, Soengas P, Fernández Leiro R, Carneiro I, Becerra M, González-Siso MI, Cerdán ME (2010b) Ixr1p regulates oxygen-dependent HEM13 transcription. FEMS Yeast Res 10:309–321

    Article  PubMed  CAS  Google Scholar 

  • Chantrel Y, Gaisne M, Lions C, Verdière J (1998) The transcriptional regulator Hap1p (Cyp1p) is essential for anaerobic or heme-deficient growth of Saccharomyces cerevisiae: genetic and molecular characterization of an extragenic suppressor that encodes a WD repeat protein. Genetics 148:559–569

    PubMed  CAS  Google Scholar 

  • Chen Y, Yang X, Zhang S, Wang X, Guo C, Guo X, Xiao D (2012) Development of Saccharomyces cerevisiae producing higher levels of sulfur dioxide and glutathione to improve beer flavor stability. Appl Biochem Biotechnol 166:402–413

    Article  PubMed  CAS  Google Scholar 

  • Chun CD, Liu OW, Madhani HD (2007) A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog 3:e22

    Article  PubMed  Google Scholar 

  • Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ (2006) Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem 100:644–669

    Article  PubMed  CAS  Google Scholar 

  • Cordente AG, Heinrich A, Pretorius IS, Swiegers JH (2009) Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res 9:446–459

    Article  PubMed  CAS  Google Scholar 

  • Davies BS, Rine J (2006) A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics 174:91–201

    Article  Google Scholar 

  • de Groot M, Daran-Lapujade P, van Breukelen B, Knijnenburg T, de Hulster E, Reinders M, Pronk J, Heck A, Slijper M (2007) Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. Microbiology 153:3864–3878

    Article  PubMed  Google Scholar 

  • Dueñas-Sánchez R, Gutiérrez G, Rincón AM, Codón AC, Benítez T (2012) Transcriptional regulation of fermentative and respiratory metabolism in Saccharomyces cerevisiae industrial bakers’ strains. FEMS Yeast Res. doi:10.1111/j.1567-1364.2012.00813.x

    PubMed  Google Scholar 

  • Ernst JF, Tielker D (2009) Responses to hypoxia in fungal pathogens. Cell Microbiol 11:183–190

    Article  PubMed  CAS  Google Scholar 

  • Farhana A, Guidry L, Srivastava A, Singh A, Hondalus MK, Steyn AJC (2010) Reductive stress in microbes: implications for understanding mycobacterium tuberculosis disease and persistence. Adv Microb Physiol 57:43–117

    Article  PubMed  CAS  Google Scholar 

  • Frand A, Kaiser C (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1:161–170

    Article  PubMed  CAS  Google Scholar 

  • Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 73:6499–6507

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Pastor R, Pérez-Torrado R, Matallana E (2012) Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production. Appl Microbiol Biotechnol 94:773–787

    Article  PubMed  Google Scholar 

  • González Siso MI, Freire Picos MA, Cerdán ME (1996) Reoxidation of the NADP produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants. FEBS Lett 387:7–10

    Article  PubMed  Google Scholar 

  • Guida A, Lindstädt C, Maguire SL, Ding C, Higgins DG, Corton NJ, Berriman M, Butler G (2011) Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis. BMC Genomics 12:e628

    Article  Google Scholar 

  • Hara KY, Kiriyama K, Inagaki A, Nakayama H, Kondo A (2012) Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 94:1313–1319

    Article  PubMed  CAS  Google Scholar 

  • Henri J, Rispal D, Bayart E, van Tilbeurgh H, Séraphin B, Graille M (2010) Structural and functional insights into Saccharomyces cerevisiae Tpa1, a putative prolylhydroxylase influencing translation termination and transcription. J Biol Chem 285:30767–30778

    Article  PubMed  CAS  Google Scholar 

  • Hickman MJ, Spatt D, Winston F (2011) The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics 188:325–338

    Article  PubMed  CAS  Google Scholar 

  • Hon T, Lee HC, Hach A, Johnson JL, Craig EA, Erdjument-Bromage H, Tempst P, Zhang L (2001) The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme. Moll Cell Biol 21:7923–7932

    Article  CAS  Google Scholar 

  • Hughes BT, Espenshade PJ (2008) Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl-hydroxylase family member. EMBO J 27:1491–1501

    PubMed  CAS  Google Scholar 

  • Hughes AL, Todd BL, Espenshade PJ (2005) SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 120:831–842

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Vasconcelles MJ, Wretzel S, Light A, Martin CE, Goldberg MA (2001) MGA2 is involved in the low-oxygen response element-dependent hypoxic induction of genes in Saccharomyces cerevisiae. Mol Cell Biol 21:6161–6169

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy P, Vemula M, Oh CS, Chellappa R, Martin CE (2004) Regulation of unsaturated fatty acid biosynthesis in Saccharomyces: the endoplasmic reticulum membrane protein, Mga2p, a transcription activator of the OLE1 gene, regulates the stability of the OLE1 mRNA through exosome-mediated mechanisms. J Biol Chem 279:36586–36592

    Article  PubMed  CAS  Google Scholar 

  • Keng T (1992) HAP1 and ROX1 form a regulatory pathway in the repression of HEM13 transcription in Saccharomyces cerevisiae. Mol Cell Biol 12:2616–2623

    PubMed  CAS  Google Scholar 

  • Klinkenberg LG, Mennella TA, Luetkenhaus K, Zitomer RS (2005) Combinatorial repression of the hypoxic genes of Saccharomyces cerevisiae by DNA binding proteins Rox1 and Mot3. Eukaryot Cell 4:649–660

    Article  PubMed  CAS  Google Scholar 

  • Lamas Maceiras M, Núñez L, Rodríguez Belmonte E, González Siso MI, Cerdán ME (2007) Functional characterization of KlHAP1: a model to foresee different mechanisms of transcriptional regulation by Hap1p in yeasts. Gene 405:96–107

    Article  PubMed  CAS  Google Scholar 

  • Lamas Maceiras M, Freire-Picos MA, Rodríguez Torres AM (2010) Transcriptional repression by Kluyveromyces lactis Tup1 in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 38:79–84

    Article  PubMed  Google Scholar 

  • Lamas Maceiras M, Rodríguez Torres MA, Freire Picos MA (2011) A stress response related to the carbon source and the absence of KlHAP2 in Kluyveromyces lactis. J Ind Microbiol Biotechnol 38:43–49

    Article  PubMed  CAS  Google Scholar 

  • Lando D, Balmer J, Laue ED, Kouzarides T (2012) The S. pombe histone H2A dioxygenase Ofd2 regulates gene expression during hypoxia. PLoS ONE 7:e29765

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Bien CM, Hughes AL, Espenshade PJ, Kwon-Chung KJ, Chang YC (2007) Cobalt chloride, a hypoxia-mimicking agent, targets sterol synthesis in the pathogenic fungus Cryptococcus neoformans. Mol Microbiol 65:1018–1033

    Article  PubMed  CAS  Google Scholar 

  • Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS (2006) The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res 6:726–743

    Article  PubMed  CAS  Google Scholar 

  • Malavé TM, Dent SY (2006) Transcriptional repression by Tup1–Ssn6. Biochem Cell Biol 84:437–443

    Article  PubMed  Google Scholar 

  • Martin T, Sherman DJ, Durrens P (2011) The Génolevures database. C R Biol 334:585–589

    Article  PubMed  CAS  Google Scholar 

  • Masuo S, Terabayashi Y, Shimizu M, Fujii T, Kitazume T, Takaya N (2010) Global gene expression analysis of Aspergillus nidulans reveals metabolic shift and transcription suppression under hypoxia. Mol Genet Genomics 284:415–424

    Article  PubMed  CAS  Google Scholar 

  • McA’Nulty MM, Whitehead JP, Lippard SJ (1996) Binding of Ixr1, a yeast HMG- domain protein, to cisplatin-DNA adducts in vitro and in vivo. Biochemistry 35:6089–6099

    Article  PubMed  Google Scholar 

  • Melvin A, Rocha S (2012) Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 24:35–43

    Article  PubMed  CAS  Google Scholar 

  • Mendes-Ferreira A, Barbosa C, Jiménez-Martí E, Del Olmo ML, Mendes-Faia A (2010) The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability. J Microbiol Biotechnol 20:1314–1321

    Article  PubMed  CAS  Google Scholar 

  • Merico A, Sulo P, Piškur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274(4):976–989

    Article  PubMed  CAS  Google Scholar 

  • Merico A, Galafassi S, Piškur J, Compagno C (2009) The oxygen level determines the fermentation pattern in Kluyveromyces lactis. FEMS Yeast Res 9(5):749–756

    Article  PubMed  CAS  Google Scholar 

  • Micolonghi C, Ottaviano D, Di Silvio E, Damato G, Heipieper H, Bianchi MM (2012) A dual signaling pathway for the hypoxic expression of lipid genes, dependent on the glucose sensor Rag4, is revealed by the analysis of KlMGA2 gene in Kluyveromyces lactis. Microbiology 158:1734–1744

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K (2009) Cellular signal transduction of the hypoxia response. J Biochem 146:757–765

    Article  PubMed  CAS  Google Scholar 

  • Núñez L, Rodríguez-Torres A, Cerdán ME (2008) Regulatory elements in the KlHEM1 promoter. Biochim Biophys Acta 1779:128–133

    Article  PubMed  Google Scholar 

  • Penacho V, Blondin B, Valero E, Gonzalez R (2012) Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Biotechnol Prog 28:327–336

    Article  PubMed  CAS  Google Scholar 

  • Poyton RO, Castello PR, Ball KA, Woo DK, Pan N (2009) Mitochondria and hypoxic signaling: a new view. Ann N Y Acad Sci 1177:48–56

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez Torres AM, Lamas Maceiras M, Rodríguez Belmonte E, Núñez Naveira L, Blanco Calvo M, Cerdán ME (2012) KlRox1p contributes to yeast resistance to metals and is necessary for KlYCF1 expression in the presence of cadmium. Gene 497:27–37

    Article  Google Scholar 

  • Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF (2006) Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p regulatory networks. J Mol Biol 361:399–411

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Fujii T, Masuo S, Fujita K, Takaya N (2009) Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics 9:7–19

    Article  PubMed  CAS  Google Scholar 

  • Silva PA, Mussatto SI, Roberto IC, Teixeira JA (2010) Ethanol production from xylose by Pichia stipitis NRRLY-7124 in a stirred tank bioreactor. Brazilian J Chem Eng 28:151–156

    Article  Google Scholar 

  • Simeonidis E, Murabito E, Smallbone K, Westerhoff HV (2010) Why does yeast ferment? A flux balance analysis study. Biochem Soc Trans 38:1225–1229

    Article  PubMed  CAS  Google Scholar 

  • Strogolova V, Furness A, Robb-McGrath M, Garlich J, Stuart RA (2012) Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol Cell Biol 32:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Yokoyama A, Tsuji T, Ikeshima E, Nakashima K, Ikushima S, Kobayashi C, Yoshida S (2011) Identification and characterization of genes involved in glutathione production in yeast. J Biosci Bioeng 112:107–113

    Article  PubMed  CAS  Google Scholar 

  • Swiegers JH, Pretorius IS (2007) Modulation of volatile sulfur compounds by wine yeast. Appl Microbiol Biotechnol 74:954–960

    Article  PubMed  CAS  Google Scholar 

  • Synnott JM, Guida A, Mulhern-Haughey S, Higgins DG, Butler G (2010) Regulation of the hypoxic response in Candida albicans. Eukaryot Cell 9:1734–1746

    Article  PubMed  CAS  Google Scholar 

  • Tsaponina O, Barsoum E, Aström SU, Chabes A (2011) Ixr1 is required for the expression of the ribonucleotide reductase Rnr1 and maintenance of dNTP pools. PLoS Genet 7:e1002061

    Article  PubMed  CAS  Google Scholar 

  • Unrean P, Nguyen NA (2012) Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions. Appl Microbiol Biotechnol 94:1387–1398

    Article  PubMed  CAS  Google Scholar 

  • Vizoso Vázquez A, Lamas Maceiras M, Becerra M, González Siso MI, Rodríguez Belmonte E, Cerdán ME (2012) Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Appl Microbiol Biotechnol 94:173–184

    Article  PubMed  Google Scholar 

  • Vukotic M, Oeljeklaus S, Wiese S, Vögtle FN, Meisinger C, Meyer HE, Zieseniss A, Katschinski DM, Jans DC, Jakobs S, Warscheid B, Rehling P, Deckers M (2012) Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. Cell Metab 15:336–347

    Article  PubMed  CAS  Google Scholar 

  • Walker GM (1998) Yeast metabolism in “Yeast Physiology and Biotechnology”. Wiley, Chichester

    Google Scholar 

  • Zara G, Angelozzi D, Belviso S, Bardi L, Goffrini P, Lodi T, Budroni M, Mannazzu I (2009) Oxygen is required to restore flor strain viability and lipid biosynthesis under fermentative conditions. FEMS Yeast Res 9:217–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant BFU2009-08854 from Ministerio de Ciencia e Innovación (Spain), co-financed by Fondo Europeo de Desarrollo Regional (FEDER). General support to the laboratory during 2008–11 was funded by Xunta de Galicia (Consolidación Grupos Referencia Competitiva 2008/008), co-financed by FEDER. A.V’s salary was funded by the “María Barbeito pre-doctoral program” from Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Esperanza Cerdán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siso, M.I.G., Becerra, M., Maceiras, M.L. et al. The yeast hypoxic responses, resources for new biotechnological opportunities. Biotechnol Lett 34, 2161–2173 (2012). https://doi.org/10.1007/s10529-012-1039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1039-8

Keywords

Navigation