Skip to main content
Log in

Lignin analysis using microwave digestion

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Lignin quantification in apple pomace residues was carried out using a microwave oven to replace traditional refluxing during the mild acidolysis step to augment the selectivity of this step towards cleavage of lignin–carbohydrate bonds and to reduce the time needed to quantify lignin. The pressure, temperature and time were optimized by response surface methodology and the results were compared to the Klason lignin methodology. Temperature and pressure had a significant positive effect (p < 0.05) on the determination of lignin. However, the time was also significant (p < 0.05) on lignin quantification. The optimal conditions of digestion were: 30 bar, 170 °C for 15 min. The digestion using microwave (lignin content = 33 % w/w) was more accurate (p < 0.05) than the the traditional refluxing (lignin content = 27 % w/w).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves MA, Schwanninger M, Pereira H, Rodrigues J et al (2009) Analytical pyrolysis as a direct method to determine the lignin content in wood. Part 3. Evaluation of species specific and tissue-specific differences in softwood lignin composition using principal component analysis. J Anal Appl Pyrolysis 85:30–37

    Article  CAS  Google Scholar 

  • Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107:2563–2591

    Article  PubMed  CAS  Google Scholar 

  • De la Hoz A, Diaz-Ortiz A, Moreno A et al (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178

    Article  PubMed  Google Scholar 

  • Fengel D, Wegener G (eds) (1989) Wood chemistry ultrastructure and reactions. de Gruyter, Berlin, p 613

    Google Scholar 

  • Gassara F, Brar SK, Pelletier F, Verma M, Godbout S, Tyagi RD et al (2011) Pomace waste management scenarios in Québec—impact on greenhouse gas emissions. J Hazard Mater. doi:10.1016/j.jhazmat

    PubMed  Google Scholar 

  • Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS et al (2006) Toward a better understanding of the lignin isolation process from wood. J Agric Food Chem 54:5939–5947

    Article  PubMed  CAS  Google Scholar 

  • Hatfield RD, Jung HG, Ralph J, Buxton DR, Weimer PJA (1994) Comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. J Sci Food Agric 65:51–58

    Article  CAS  Google Scholar 

  • Kirk TK, Obst JR (1988) Lignin determination. Meth Enzymol 161:89–101

    Google Scholar 

  • Lai YZ, Sarkanen KV (1971) Isolation and structural studies. In: Sarkanen KV, Ludwig CH (eds) Lignins, occurrence, formation, structure and reactions. Wiley Interscience, New York, pp 165–240

    Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G et al (2006) Characterization of lignin–carbohydrate complexes from spruce sulfite pulps. Holzforschung 60:162–165

    CAS  Google Scholar 

  • Lindstrom P, Tierney J, Wathey B, Westman J et al (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283

    Article  Google Scholar 

  • Singh SK, Dodge J, Durrani MJ, Khan MA (1995) Optimization and characterization of controlled release pellets coated with experimental latex: I. Anionic drug. Int J Pharm 125:243–255

    Article  CAS  Google Scholar 

  • Theander O, Westerlund EA (1986) Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J Agric Food Chem 34:330–336

    Article  CAS  Google Scholar 

  • Van Soest PJ (1967) Development of a comprehensive system of feed analysis and its application to forages. J Anim Sci 26:119–128

    Google Scholar 

  • Vendruscolo F, Albuquerque PM, Streit F et al (2008) Apple pomace: a versatile substrate for biotechnological applications. Crit Rev Biotechnol 28:1–12

    Article  PubMed  CAS  Google Scholar 

  • Villas-Bôas SG, Esposito E, Mendonça MM (2002) The novel lignocellulolytic ability of Candida utilis during solid-substrate cultivation on apple pomace. World J Microbiol Biotechnol 18(6):541–545

    Article  Google Scholar 

  • Zoia L, Orlandi M, Argyropoulo DS (2008) Microwave-assisted lignin isolation using the enzymatic mild acidolysis (EMAL) protocol. J Agric Food Chem 56:10115–10122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to the Natural Sciences and Engineering Research Council of Canada, FQRNT (ENC 125216) MAPAQ (No. 809051) and Projet Initiative Inde 2010 for financial support. The views or opinions expressed in this article are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder K. Brar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassara, F., Ajila, C.M., Brar, S.K. et al. Lignin analysis using microwave digestion. Biotechnol Lett 34, 1811–1815 (2012). https://doi.org/10.1007/s10529-012-0991-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0991-7

Keywords

Navigation