Skip to main content
Log in

Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The impact of the two adaptation-induced mutations in an improved xylose-fermenting Zymomonas mobilis strain was investigated. The chromosomal mutation at the xylose reductase gene was critical to xylose metabolism by reducing xylitol formation. Together with the plasmid-borne mutation impacting xylose isomerase activity, these two mutations accounted for 80 % of the improvement achieved by adaptation. To generate a strain fermenting xylose in the presence of high acetic acid concentrations, we transferred the two mutations to an acetic acid-tolerant strain. The resulting strain fermented glucose + xylose (each at 5 % w/v) with 1 % (w/v) acetic acid at pH 5.8 to completion with an ethanol yield of 93.4 %, outperforming other reported strains. This work demonstrated the power of applying molecular understanding in strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal M, Chen RR (2011) Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 33:2127–2133

    Article  PubMed  CAS  Google Scholar 

  • Agrawal M, Mao Z, Chen RR (2011) Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain. Biotechnol Bioeng 108(4):777–785

    Article  PubMed  CAS  Google Scholar 

  • Chen RR, Wang Y, Shin H-D, Agrawal M, Mao Z (2009) Improved strains of Zymomonas mobilis for fermentation of biomass. WO Patent WO/2009/132,201

  • De Graaf AA, Striegel K, Wittig RM, Laufer B, Schmitz G, Wiechert W, Sprenger GA, Sahm H (1999) Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by C-13- and P-31-NMR spectroscopy. Arch Microbiol 171(6):371–385

    Article  PubMed  Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556. doi:10.1016/j.tibtech.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  • Jeon YJ, Svenson CJ, Joachimsthal EL, Rogers PL (2002) Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis. Biotechnol Lett 24(10):819–824

    Article  CAS  Google Scholar 

  • Joachimsthal E, Haggett KD, Jang JH, Rogers PL (1998) A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol Lett 20(2):137–142

    Article  CAS  Google Scholar 

  • Joachimsthal E, Haggett KD, Rogers PL (1999) Evaluation of recombinant strains of Zymomonas mobilis for ethanol production from glucose xylose media. Appl Biochem Biotechnol 77–79:147–157

    Article  Google Scholar 

  • Kim IS, Barrow KD, Rogers PL (2000a) Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5). Appl Environ Microbiol 66(1):186–193

    Article  PubMed  CAS  Google Scholar 

  • Kim IS, Barrow KD, Rogers PL (2000b) Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4(pZB5). Appl Biochem Biotechnol 84–86:357–370

    Article  PubMed  Google Scholar 

  • Lawford HG, Rousseau JD, Mohagheghi A, McMillan JD (1999) Fermentation performance characteristics of a prehydrolyzate-adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentations. Appl Biochem Biotechnol 77–79:191–204

    Article  Google Scholar 

  • Mohagheghi A, Evans K, Chou YC, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98:885–898

    Article  PubMed  Google Scholar 

  • Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. In: Fiechter A (ed) Microbial reactions, vol 23. Springer, Berlin, pp 37–84

    Chapter  Google Scholar 

  • Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108:263–288

    PubMed  CAS  Google Scholar 

  • Viitanen P, McCutchen C, Chou Y, Zhang M (2008) Xylitol synthesis mutant of xylose-utilizing Zymomonas for ethanol production. WO Patent WO/2008/133,638

  • Viitanen PV, Tao L, Caimi PG, Chou YC, Franden MA, Knoke K, Zhang M, Zhang Y (2011) Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate. US Patent US 7,897,396 B2

  • Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4:25. doi:10.1186/1475-2859-4-25

    Article  PubMed  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267(5195):240–243

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Chevron Oil Corp. for funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Ruizhen Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, M., Wang, Y. & Chen, R.R. Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations. Biotechnol Lett 34, 1825–1832 (2012). https://doi.org/10.1007/s10529-012-0970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0970-z

Keywords

Navigation