Skip to main content
Log in

Real-time quantitative analysis of the influence of blue light on citrinin biosynthetic gene cluster expression in Monascus

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

When Monascus MX was grown under blue light instead of in the dark, citrinin production increased from 478 mg l−1 to 698 mg l−1. To explain this, the expression of the pksCT gene, which encodes citrinin polyketide synthase, and of 5 ORFs around it, were monitored. Blue light enhanced citrinin production by upregulating the expression of orf1, orf3, and orf4, indicating that pksCT was not the key gene responsible for the quantity of citrinin production in blue light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babitha S, Carvahlo JC, Soccol CR et al (2008) Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World J Microbiol Biotechnol 24:2671–2675

    Article  CAS  Google Scholar 

  • Blanc PJ, Laussac JP, Le Bars J et al (1995) Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213

    Article  PubMed  CAS  Google Scholar 

  • Castellanos F, Schmoll M, Martínez P et al (2010) Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol 47:468–476

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Tseng CP, Chien IL et al (2008) Exploring the distribution of citrinin biosynthesis related genes among Monascus species. J Agric Food Chem 56:11767–11772

    Article  PubMed  CAS  Google Scholar 

  • Davis ND, Dalby DK, Diener UL et al (1975) Medium-Scale production of citrinin by Penicillium citrinum in a semisynthetic medium. Appl Microbiol 29:118–120

    PubMed  CAS  Google Scholar 

  • Malmstrøm J, Christophersen C, Frisvad JC (2000) Secondary metabolites characteristic of Penicillium citrinum, Penicillium steckii and related species. Phytochemistry 54:301–309

    Article  PubMed  Google Scholar 

  • Miyake T, Mori A, Kii T et al (2005) Light effects on cell development and secondary metabolism in Monascus. J Ind Microbiol Biotechnol 32:103–108

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C, Russo VE (1990) Fast induction of translatable mRNA by blue light in Neurospora crassa wt: the wc-1 and wc-2 mutants are blind. J Photochem Photobiol B 4:261–271

    Article  PubMed  CAS  Google Scholar 

  • Ondrusch N, Kreft J (2011) Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes. PLoS ONE 6:e16151

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Heydt M, Rüfer C, Raupp F et al (2011) Influence of light on food relevant fungi with emphasis on ochratoxin producing species. Int J Food Microbiol 145:229–237

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Kinoshita H, Ishihara S et al (2005) Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 71:3453–3457

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T (2007) Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Appl Environ Microbiol 73:5097–5103

    Article  PubMed  CAS  Google Scholar 

  • Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85:1259–1277

    Article  PubMed  CAS  Google Scholar 

  • Wang CL, Fu ZL, Chen MH et al. (2009) Blue light effects on pigment and citrinin production in Monascus. 3rd International conference bioinformatics and biomedical engineering, ICBBE, Beijing, 11–16 June 2009, pp 1–4

  • Wang Q, Zeng J, Deng K et al (2011) DBB1a, involved in gibberellin homeostasis, functions as a negative regulator of blue light-mediated hypocotyl elongation in Arabidopsis. Planta 233:13–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 20776115 & 31171729).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Yang, H., Chen, M. et al. Real-time quantitative analysis of the influence of blue light on citrinin biosynthetic gene cluster expression in Monascus . Biotechnol Lett 34, 1745–1748 (2012). https://doi.org/10.1007/s10529-012-0962-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0962-z

Keywords

Navigation