Heat-processed Gynostemma pentaphyllum extract improves obesity in ob/ob mice by activating AMP-activated protein kinase


Gynostemma pentaphyllum is widely used in Asian countries as a herbal medicine to treat dyslipidemia, type 2 diabetes and inflammation. An ethanol extract of G. pentaphyllum lessened obesity by activating AMP-activated protein kinase (AMPK). The levels of damulins A and B, components responsible for AMPK activation in the extract, were increased by autoclaving in a time-dependent manner. Heat-processed G. pentaphyllum extract, actiponin containing damulins A (0.93 %, w/w) and B (0.68 %, w/w), significantly stimulated fat oxidation and glucose uptake via AMPK activation in L6 myotube cells. Oral administration of actiponin to ob/ob mice for 8 weeks decreased body weight gain, liver weight, and blood cholesterol levels with AMPK activation in the soleus muscle. Our results demonstrate the beneficial effect of G. pentaphyllum on improving obesity and have elucidated the underlying molecular mechanisms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Burcelin R, Crivelli V, Perrin C, Da Costa A, Mu J, Kahn BB, Birnbaum MJ, Kahn CR, Vollenweider P, Thorens B (2003) GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization. J Clin Invest 111:1555–1562

    PubMed  CAS  Google Scholar 

  2. Cabrero A, Alegret M, Sánchez RM, Adzet T, Laguna JC, Vázquez M (2001) Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes 50:1883–1890

    PubMed  Article  CAS  Google Scholar 

  3. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Lyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3:403–416

    PubMed  Article  CAS  Google Scholar 

  4. Davies SP, Carling D, Munday MR, Hardie DG (1992) Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur J Biochem 203:615–623

    PubMed  Article  CAS  Google Scholar 

  5. Fogarty S, Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 1804:581–591

    PubMed  Article  CAS  Google Scholar 

  6. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9:88

    PubMed  Article  Google Scholar 

  7. Hwang SL, Kim HN, Jung HH, Kim JE, Choi DK, Hur JM, Lee JY, Song H, Song KS, Huh TL (2008) Beneficial effects of β-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase. Biochem Biophys Res Commun 377:1253–1258

    PubMed  Article  CAS  Google Scholar 

  8. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH (2000) Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 63:1702–1704

    PubMed  Article  CAS  Google Scholar 

  9. Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS, Yun JY, Namgoong IS, Ha J, Park IS, Lee IK, Viollet B, Youn JH, Lee HK, Lee KU (2004) Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10:727–733

    PubMed  Article  CAS  Google Scholar 

  10. Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY, Chang KT, Park JW, Park DC, Song BJ, Veech RL, Song H, Huh TL (2004) Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem 9:9968–39974

    Google Scholar 

  11. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48:1667–1671

    PubMed  Article  CAS  Google Scholar 

  12. Lage R, Diéguez C, Vidal-Puig A, López M (2008) AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 14:539–549

    PubMed  Article  CAS  Google Scholar 

  13. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55:2256–2264

    PubMed  Article  CAS  Google Scholar 

  14. Nguyen PH, Gauhar R, Hwang SL, Dao TT, Park DC, Kim JE, Song H, Huh TL, Oh WK (2011) New dammarane-type glucosides as potential activators of AMP-activated protein kinase (AMPK) from Gynostemma pentaphyllum. Bioorg Med Chem 19:6254–6260

    PubMed  Article  CAS  Google Scholar 

  15. Nishiumi S, Ashida H (2007) Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Biosci Biotechnol Biochem 71:2343–2346

    PubMed  Article  CAS  Google Scholar 

  16. Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M (1994) Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem 269:3568–3573

    PubMed  CAS  Google Scholar 

  17. Razmovski-Naumovski V, Huang TH, Tran VH, Li GQ, Duke CC, Roufogalis BD (2005) Chemistry and pharmacology of Gynostemma pentaphyllum. Phytochem Rev 4:197–219

    Article  CAS  Google Scholar 

  18. Takemoto T, Arihara S, Yoshikawa K, Kawasaki J, Nakajima T, Okuhira M (1984) Studies on the constituents of cucurbitaceae plants. XI. On the saponin constituents of Gynostemma pentaphyllum Makino (7). Yakugaku Zasshi 104:1043–1049

    CAS  Google Scholar 

  19. Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341

    PubMed  Article  CAS  Google Scholar 

  20. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233

    PubMed  Article  CAS  Google Scholar 

  21. Yeo J, Kang YJ, Jeon SM, Jung UJ, Lee MK, Song H, Choi MS (2008) Potential hypoglycemic effect of an ethanol extract of Gynostemma pentaphyllum in C57BL/KsJ-db/db mice. J Med Food 11:709–716

    PubMed  Article  CAS  Google Scholar 

  22. Yoshikawa K, Arimitsu M, Kishi K, Takemoto T, Arihara S (1987) Studies on the constituents of Cucurbitaceae plants. XVIII. On the saponin constituents of Gynostemma pentaphyllum Makino. (13). Yakugaku Zasshi 107:361–366

    CAS  Google Scholar 

  23. Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416

    PubMed  Article  Google Scholar 

Download references


This work was supported by a grant (PF06212-00) from the Plant Diversity Research Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology, and by a grant (A111345) from the Korean Health Technology R&D Project from the Ministry of Health and Welfare, Republic of Korea.

Author information



Corresponding author

Correspondence to Tae-Lin Huh.

Additional information

Rehman Gauhar and Seung-Lark Hwang contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Supplementary material 2 (PPTX 190 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gauhar, R., Hwang, S., Jeong, S. et al. Heat-processed Gynostemma pentaphyllum extract improves obesity in ob/ob mice by activating AMP-activated protein kinase. Biotechnol Lett 34, 1607–1616 (2012). https://doi.org/10.1007/s10529-012-0944-1

Download citation


  • AMP-activated protein kinase
  • Damulins
  • Fat oxidation
  • Gynostemma pentaphyllum
  • Obesity