Skip to main content
Log in

Internal ribosome entry site mediates protein synthesis in yeast Pichia pastoris

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The imitation of translation, as mediated by internal ribosome entry sites, has not yet been reported in Pichia pastoris. An IRES element from Saccharomyces cerevisiae was demonstrated to direct the translation of a dicistronic mRNA in P. pastoris. The 5′-untranslated region of GPR1 mRNA, termed GPR, was cloned into a dual reporter construct containing an upstream Rhizomucor miehei lipase (RML) and a downstream β-galactosidase gene (lacZ) from Escherichia coli BL21. After being transformed into P. pastoris, the RML gene and lacZ were simultaneously expressed. The possibility of DNA rearrangement, spurious splicing, or cryptic promoter in the GPR sequence were eliminated, indicating that expression of a second ORF was IRES-dependent. These findings strongly suggested that the IRES-dependent translation initiation mechanism is conserved in P. pastoris and provides a useful means to express multiple genes simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baranick BT, Lemp NA, Nagashima J, Hiraoka K, Kasahara N, Logg CR (2008) Splicing mediates the activity of four putative cellular internal ribosome entry sites. Proc Natl Acad Sci USA 105(12):4733–4738

    Article  PubMed  CAS  Google Scholar 

  • Bhataya A, Schmidt-Dannert C, Lee PC (2009) Metabolic engineering of Pichia pastoris X-33 for lycopene production. Proc Biochem 44(10):1095–1102

    Article  CAS  Google Scholar 

  • Broger T, Odermatt RP, Huber P, Sonnleitner B (2011) Real-time on-line flow cytometry for bioprocess monitoring. J Biotechnol 154(4):240–247

    Article  PubMed  CAS  Google Scholar 

  • Dorokhov YL, Skulachev MV, Ivanov PA, Zvereva SD, Tjulkina LG, Merits A, Gleba YY, Hohn T, Atabekov JG (2002) Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc Natl Acad Sci USA 99(8):5301–5306

    Article  PubMed  CAS  Google Scholar 

  • Dumas E, Staedel C, Colombat M, Reigadas S, Chabas S, Astier-Gin T, Cahour A, Litvak S, Ventura M (2003) A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5′-UTR. Nucleic Acids Res 31(4):1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D (2006) Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng 94(2):353–361

    Article  PubMed  CAS  Google Scholar 

  • Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 73(20):6499–6507

    Article  PubMed  CAS  Google Scholar 

  • Gilbert WV, Zhou K, Butler TK, Doudna JA (2007) Cap-independent translation is required for starvation-induced differentiation in yeast. Science 317(5842):1224–1227

    Article  PubMed  CAS  Google Scholar 

  • Han Z, Han S, Zheng S, Lin Y (2009) Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. Appl Microbiol Biotechnol 85(1):117–126

    Article  PubMed  CAS  Google Scholar 

  • Holcik M, Graber T, Lewis SM, Lefebvre CA, Lacasse E, Baird S (2005) Spurious splicing within the XIAP 5′-UTR occurs in the Rluc/Fluc but not the βgal/CAT bicistronic reporter system. RNA 11(11):1605–1609

    Article  PubMed  CAS  Google Scholar 

  • Hu F, Li X, Lu J, Mao PH, Jin X, Rao B, Zheng P, Zhou YL, Liu SY, Ke T, Ma XD, Ma LX (2011) A visual method for direct selection of high-producing Pichia pastoris clones. BMC Biotechnol 11:23

    Article  PubMed  CAS  Google Scholar 

  • Jang SK, Krausslich HG, Nicklin MJH, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62(8):2636–2643

    PubMed  CAS  Google Scholar 

  • Komar AA, Hatzoglou M (2011) Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10(2):229–240

    Article  PubMed  CAS  Google Scholar 

  • Komar AA, Lesnik T, Cullin C, Merrick WC, Trachsel H, Altmann M (2003) Internal initiation drives the synthesis of Ure2 protein lacking the prion domain and affects [URE3] propagation in yeast cells. EMBO J 22(5):1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (2005) A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 33(20):6593–6602

    Article  PubMed  CAS  Google Scholar 

  • Mountford PS, Smith AG (1995) Internal ribosome entry sites and dicistronic RNAs in mammalian transgenesis. Trends Genet 11(5):179–184

    Article  PubMed  CAS  Google Scholar 

  • Paz I, Abramovitz L, Choder M (1999) Starved Saccharomyces cerevisiae cells have the capacity to support internal initiation of translation. J Biol Chem 274(31):21741–21745

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334(6180):320–325

    Article  PubMed  CAS  Google Scholar 

  • Saffran HA, Smiley JR (2009) The XIAP IRES activates 3′-cistron expression by inducing production of monocistronic mRNA in the βgal/CAT bicistronic reporter system. RNA 15(11):1980–1985

    Article  PubMed  CAS  Google Scholar 

  • Stadlmayr G, Benakovitsch K, Gasser B, Mattanovich D, Sauer M (2010) Genome-scale analysis of library sorting (GALibSo): isolation of secretion enhancing factors for recombinant protein production in Pichia pastoris. Biotechnol Bioeng 105(3):543–555

    Article  PubMed  CAS  Google Scholar 

  • Urwin P, Yi L, Martin H, Atkinson H, Gilmartin PM (2000) Functional characterization of the EMCV IRES in plants. Plant J 24(5):583–589

    Article  PubMed  CAS  Google Scholar 

  • Van Eden ME, Byrd MP, SherrillL KW, Lloyd RE (2004) Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10(4):720–730

    Article  PubMed  Google Scholar 

  • Verge V, Vonlanthen M, Masson JM, Trachsel H, Altmann M (2004) Localization of a promoter in the putative internal ribosome entry site of the Saccharomyces cerevisiae TIF4631 gene. RNA 10(2):277–286

    Article  PubMed  CAS  Google Scholar 

  • Wan YY, Flavell RA (2005) Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 102(14):5126–5131

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Weaver M, Magnuson NS (2005) Cryptic promoter activity in the DNA sequence corresponding to the pim-1 5′-UTR. Nucleic Acids Res 33(7):2248–2258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (no. 20976062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanrui Ye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S., Lin, Y., Li, C. et al. Internal ribosome entry site mediates protein synthesis in yeast Pichia pastoris . Biotechnol Lett 34, 957–964 (2012). https://doi.org/10.1007/s10529-012-0862-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0862-2

Keywords

Navigation