Skip to main content

Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism

Abstract

Agrobacterium rhizogenes is a natural plant genetic engineer. It is a gram-negative soil bacterium that induces hairy root formation. Success has been obtained in exploring the molecular mechanisms of transferred DNA (T-DNA) transfer, interaction with host plant proteins, plant defense signaling and integration to plant genome for successful plant genetic transformation. T-DNA and corresponding expression of rol genes alter morphology and plant host secondary metabolism. During transformation, there is a differential loss of a few T-DNA genes. Loss of a few ORFs drastically affect the growth and morphological patterns of hairy roots, expression pattern of biosynthetic pathway genes and accumulation of specific secondary metabolites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akutsu M, Ishizaki T, Sato H (2004) Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes. Mol Breed 13:69–78

    Article  CAS  Google Scholar 

  2. Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L et al (2008) Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–715

    PubMed  Article  CAS  Google Scholar 

  3. Ayadi R, Tremouillaux-Guiller J (2003) Root formation from transgenic calli of Ginkgo biloba. Tree Physiol 23:713–718

    PubMed  Article  Google Scholar 

  4. Blechert S, Brodschelm W, Holder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH (1995) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105

    PubMed  Article  CAS  Google Scholar 

  5. Bonhomme V, Laurain Mattar D, Fliniaux MA (2000a) Effects of the rolC gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252

    PubMed  Article  CAS  Google Scholar 

  6. Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux M, Jacquin-Dubreuil A (2000b) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. J Biotechnol 81:151–158

    PubMed  Article  CAS  Google Scholar 

  7. Bonhomme VL, Laurain-Mattar D, Fliniaux MA (2004) Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402. Planta 218:890–893

    Article  Google Scholar 

  8. Brevet J, Tempe J (1988) Homology mapping of T-DNA regions of three Agrobacterium rhizogenes Ri plasmids by electron microscope heteroduplex studies. Plasmid 19:75–83

    PubMed  Article  CAS  Google Scholar 

  9. Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    PubMed  Article  CAS  Google Scholar 

  10. Bulgakov VP, Khodakovskaya MV, Labetskaya NV, Chernoded GK, Zhuravlev YN (1998) The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochemistry 49:1929–1934

    Article  CAS  Google Scholar 

  11. Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskay MV, Glazunov VP, Zvereva EV, Fedoreyev SA, Zhuravlev YN (2002) Effects of salicylic acid, methyl jasmonate, etephone and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with rolB and rolC genes. J Biotechnol 97:213–221

    PubMed  Article  CAS  Google Scholar 

  12. Bulgakov VP, Tchernoded GK, Mischenko NP, Shkryl Yu N, Glazunov VP, Fedoreyev SA, Zhuravlev Yu N (2003) Increase in anthraquinone content in Rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway. Biochemistry (Mosc) 68:795–801

    Article  CAS  Google Scholar 

  13. Bulgakov VP, Veselova MV, Tchernoded GK, Kiselev KV, Fedoreyev SA, Zhuravlev YN (2005) Inhibitory effect of the Agrobacterium rhizogenes rolC gene on rabdosiin and rosmarinic acid production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures. Planta 221:471–478

    PubMed  Article  CAS  Google Scholar 

  14. Bulgakov VP, Kisselev KV, Yakovlev KV (2006) Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1:454–461

    PubMed  Article  CAS  Google Scholar 

  15. Bulgakov VP, Aminin DL, Shkryl YN, Gorpenchenko TY, Veremeichik GN, Dmitrenok PS, Zhuravlev YN (2008) Suppression of reactive oxygen species and enhanced stress tolerance in Rubia cordifolia cells expressing the rolC oncogene. Mol Plant Microbe Interact 21:1561–1570

    PubMed  Article  CAS  Google Scholar 

  16. Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395

    Article  CAS  Google Scholar 

  17. Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Rep 25:1059–1066

    PubMed  Article  CAS  Google Scholar 

  18. Chilton MD, Tepfer DA, Petit A, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  19. Cho GH, Kim DI, Pedersen H, Chin CK (1988) Ethephon enhancement of secondary metabolite synthesis in plant cell cultures. Biotechnol Prog 4:184–188

    Article  CAS  Google Scholar 

  20. Dan Y, Armstrong CL, Dong J et al (2009) Lipoic acid—a unique plant transformation enhancer. In Vitro Cell Dev Biol Plant 45:630–638

    Article  CAS  Google Scholar 

  21. De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spano L, Costantino P (1985) Localization of agropine synthesizing functions in the TR region of the root inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7

    PubMed  Article  Google Scholar 

  22. Dessaux Y, Petit A, Tempe J (1992) Opines in Agrobacterium biology. In: Verma DPS (ed) Molecular signals in plant-microbe communications. CRC Press, Boca Raton, pp 109–136

    Google Scholar 

  23. Filetici P, Spano L, Costantino P (1987) Conserved regions in the T-DNA of different Agrobacterium rhizogenes root-inducing plasmids. Plant Mol Biol 9:19–26

    Article  CAS  Google Scholar 

  24. Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration Ann. Rev Plant Physiol Plant Mol Biol 51:223–256

    Article  CAS  Google Scholar 

  25. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    PubMed  Article  CAS  Google Scholar 

  26. Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676

    PubMed  Article  CAS  Google Scholar 

  27. Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Ann Rev Phytopathol 48:45–68

    Article  CAS  Google Scholar 

  28. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 7:1175–1185

    Article  Google Scholar 

  29. Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    PubMed  Article  CAS  Google Scholar 

  30. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409

    PubMed  Article  CAS  Google Scholar 

  31. Hildebrandt EM (1934) Life history of the hairy root organism in relation to its pathogenesis on nursery apple trees. J Agric Res 48:857–885

    Google Scholar 

  32. Huffman GA, White FF, Gordon MP, Nester EW (1984) Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157:269–276

    PubMed  CAS  Google Scholar 

  33. James C (2006) Global status of commercialized biotech/GM crops: 2005. In: ISAAA Briefs 34. ISAAA, Metro Manila

  34. Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102

    PubMed  Article  CAS  Google Scholar 

  35. Joubert P, Beaupere D, Lelievre P, Wadouachi A, Sangwan RS, Sangwan-Norreel BS (2002) Effect of phenolic compounds on Agrobacterium vir genes and gene transfer induction-a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162:733–743

    Article  CAS  Google Scholar 

  36. Kiselev KV, Dubrovina AS, Veselova MV, Bulgakov VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    PubMed  Article  CAS  Google Scholar 

  37. Kumar V, Sharma A, Prasad NCB, Gururaj BH, Ravishankar AG (2006) Agrobacterium rhizogenes mediated genetic transformation resulting in hairy root formation is enhanced by ultrasonication and acetosyringone treatment. Elect J Biotechnol 9:349–357

    Google Scholar 

  38. Kunik T, Tzfira T, Kapulnik Y et al (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98:1871–1876

    PubMed  Article  CAS  Google Scholar 

  39. Kunshi M, Shimomura K, Takida M, Kitanaka S (1998) Growth and ginsenoside production of adventitious and hairy root cultures in an interspecific hybrid ginseng (Panax ginseng_P. quinquefolium). Nat Med 52:1–4

    Google Scholar 

  40. Lam SB, Lam L, Harrison L, Strobel G (1984) Genetic information of the Ri plasmid of Agrobacterium rhizogenes determines host specificity. Plant Sci Lett 34:345–352

    Article  CAS  Google Scholar 

  41. Lan X, Quan H (2010) Hairy root culture of Przewalskia tangutica for enhanced production of pharmaceutical tropane alkaloids. J Med Plants Res 4:1477–1481

    CAS  Google Scholar 

  42. Lessard PA, Kulaveerasingam H, York GM et al (2002) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79

    PubMed  Article  CAS  Google Scholar 

  43. Li W, Li MF, Yang DL, Xu R, Zhang R (2009) Production of podophyllotoxin by root culture of Podophyllum hexandrum Royle. Elect J Biol 5:34–39

    CAS  Google Scholar 

  44. Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10 hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22:437–441

    PubMed  Article  CAS  Google Scholar 

  45. Mallol A, Cusidó RM, Palazón J, Bonfill M, Morales C, Piñol MT (2001) Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57:365–371

    PubMed  Article  CAS  Google Scholar 

  46. Matsumoto K, Glaucia BG, Teixeira BJ, Monte CD (2009) Agrobacterium-mediated transient expression system in banana immature fruits. Afr J Biotechnol 8:4039–4042

    CAS  Google Scholar 

  47. Mehrotra S, Kukreja AK, Khanuja SPS, Mishra BN (2008) Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Elect J Biotechnol 11:1–7

    Google Scholar 

  48. Miranda A, Janssen G, Hodges L et al (1992) Agrobacterium tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J Bacteriol 174:2288–2297

    PubMed  CAS  Google Scholar 

  49. Mishra BN, Ranjan R (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol Appl Biochem 49:1–10

    PubMed  Article  CAS  Google Scholar 

  50. Moyano E, Fornale S, Palazon J, Cusido RM, Bonfill M, Morales C, Pinol MT (1999) Effect of Agrobacterium rhizogenes T-DNA on alkaloid production in Solanaceae plants. Phytochemistry 52:1287–1292

    Article  CAS  Google Scholar 

  51. Nandakumar R, Suzanne LC, Rogers MD (2005) Agrobacterium-mediated transformation of the wetland monocot Typha latifolia L. (Broadleaf cattail). Plant Cell Rep 23:744–750

    PubMed  Article  CAS  Google Scholar 

  52. Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plantarum 100:463–473

    Article  CAS  Google Scholar 

  53. Palazon J, Cusido RM, Roig C, Pinol MT (1997) Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures. Plant Physiol Biochem 35:155–162

    CAS  Google Scholar 

  54. Palazon J, Cusido RM, Roig C, Pinol MT (1998a) Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants. Plant Cell Rep 17:384–390

    Article  CAS  Google Scholar 

  55. Palazon J, Cusido RM, Gonzalo J, Bonfill M, Morales S, Pinol MT (1998b) Relation between the amount the rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718

    Article  CAS  Google Scholar 

  56. Park SU, Facchini PJ (2000) Agrobacterium rhizogenes-mediated transformation of opium poppy Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. J Exp Bot 347:1005–1016

    Article  Google Scholar 

  57. Pinol MT, Palazon J, Cusido R, Serrano M (1996) Effects of Ri T-DNA from Agrobacterium rhizogenes on growth and hyoscyamine production in Datura stramonium root cultures. Bot Acta 109:133–138

    CAS  Google Scholar 

  58. Putalun W, Udomsin O, Yusaku G et al (2010) Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotech Lett 32:721–724

    Article  CAS  Google Scholar 

  59. Riker AJ, Banfield WM, Wright WH, Keitt GW (1930) Studies on infectious hairy root of nursery apple trees. J Agric Res 41:507–540

    Google Scholar 

  60. Salas MG, Park SH, Srivatanakul M, Smith RH (2001) Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep 20:701–705

    Article  CAS  Google Scholar 

  61. Satheeshkumar K, Jose B, Sonia EV, Seeni S (2009) Isolation of morphovariants through plant regeneration in A. rhizogenes induced hairy root cultures of Plumbago rosea L. Indian J Biotechnol 8:435–441

    CAS  Google Scholar 

  62. Sevon N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    PubMed  Article  CAS  Google Scholar 

  63. Shilpa K, Varun K, Lakshmi BS (2010) An alternate method of natural drug production: eliciting plant secondary metabolite using plant cell culture. Plant Sci 5:222–247

    Article  Google Scholar 

  64. Shin S, Kim Y (1996) Production of anthraquinone derivatives by hairy roots of Rubia cordifolia var pratensis. Saengyak Hakhoechi 27:301–308

    CAS  Google Scholar 

  65. Shinde AN, Malpathak N, Fulzele PD (2009) Enhanced production of phytoestrogenic isoflavones from hairy root cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnol Bioprocess Eng 14:288–294

    Article  CAS  Google Scholar 

  66. Shkryl YN, Veremeichik GN, Bulgakov VP et al (2008) Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol Bioeng 100:118–125

    PubMed  Article  CAS  Google Scholar 

  67. Sinkar VP, White FF, Gordon MP (1987) Molecular biology of Ri-plasmid—a review. J Biosci 11:47–57

    Article  CAS  Google Scholar 

  68. Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biologia Plantarum 55:1–15

    Article  CAS  Google Scholar 

  69. Srivastava S, Srivastava AK (2007) Hairy root culture for mass production of high value secondary metabolites. Crit Rev Biotechnol 27:29–43

    PubMed  Article  CAS  Google Scholar 

  70. Stewart FC, Rolfs FM, Hall FH (1900) A fruit disease survey of western New York in 1900. New York Agric Exp Sta Bull 191:291–331

    Google Scholar 

  71. Sudha CG, Obul Reddy B, Ravishankar GA, Seeni S (2003) Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnol Lett 25:631–636

    PubMed  Article  CAS  Google Scholar 

  72. Tague BW (2001) Germ-line transformation of Arabidopsis lasiocarpa. Transgenic Res 10:259–267

    PubMed  Article  CAS  Google Scholar 

  73. Taneja J, Jaggi M, Wankhede DP, Sinha AK (2010) Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29:1119–1129

    PubMed  Article  CAS  Google Scholar 

  74. Trovato M, Linhares F (1999) Recent advances on rol genes research: a tool to study plant differentiation. Curr Top Plant Biol 1:51–62

    CAS  Google Scholar 

  75. Tzfira T, Vaidya M, Citovsky V (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92

    PubMed  Article  CAS  Google Scholar 

  76. White FF, Taylor GH, Huffmann GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA of the root inducing plasmid of Agrobacterium rhizogenes. J Bacter 164:33–44

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank DBT, UGC, CSIR and other government funding agencies for providing financial assistance to promote the research work. SC is also thankful to the BTISNet SubDIC (BT/BI/04/065/04) and Birla Institute of Technology, Mesra, Ranchi, for providing infrastructure facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sheela Chandra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chandra, S. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34, 407–415 (2012). https://doi.org/10.1007/s10529-011-0785-3

Download citation

Keywords

  • Agrobacterium
  • Plant secondary metabolism
  • Ri Plasmid
  • Rol genes
  • T-DNA
  • Virulence proteins