Ginsenoside F1 production from ginsenoside Rg1 by a purified β-glucosidase from Fusarium moniliforme var. subglutinans

Abstract

Fusarium moniliforme var. subglutinans was selected from among 100 strains of fungi for producing ginsenoside F1 from ginsenoside Rg1. The enzyme responsible was purified as a single 85 kDa band with a specific activity of 136 U mg−1. It hydrolysed glucose-linked ginsenosides Rb1, Rd and Rg1 but not for other monosaccharide-linked ginsenosides, Rb2, Rc, R1, and Re. Under the optimum conditions of pH 6.0, 50°C, 30 U l−1 of enzyme, and 5 mg Rg1 ml−1, 4 mg F1 ml−1 was produced after 4 h, with a molar yield of 100% and a productivity of 1 g l−1 h−1. This represents the highest productivity and conversion yield of F1 yet reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, Jin F, Yu H, Chin YW, Lee HK, Im WT, Kim SG (2010) Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl Environ Microbiol 76:5827–5836

    PubMed  Article  CAS  Google Scholar 

  2. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH (2002) Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull 25:743–747

    PubMed  Article  CAS  Google Scholar 

  3. Bae EA, Shin JE, Kim DH (2005) Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol Pharm Bull 28:1903–1908

    PubMed  Article  CAS  Google Scholar 

  4. Chae S, Kang KA, Chang WY, Kim MJ, Lee SJ, Lee YS, Kim HS, Kim DH, Hyun JW (2009) Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. J Agric Food Chem 57:5777–5782

    PubMed  Article  CAS  Google Scholar 

  5. Chen GT, Yang M, Song Y, Lu ZQ, Zhang JQ, Huang HL, Wu LJ, Guo DA (2008) Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Appl Microbiol Biotechnol 77:1345–1350

    PubMed  Article  CAS  Google Scholar 

  6. Chi H, Ji GE (2005) Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 27:765–771

    PubMed  Article  CAS  Google Scholar 

  7. Huang C, Wang G, Li H, Xie H, Sun J, Lv H, Lv T (2006) Sensitive and selective liquid chromatography-electrospray ionisation-mass spectrometry analysis of astragaloside-IV in rat plasma. J Pharm Biomed Anal 40:788–793

    PubMed  Article  CAS  Google Scholar 

  8. Jeya M, Joo AR, Lee KM, Tiwari MK, Kim SH, Lee JK (2010) Characterization of beta-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl Microbiol Biotechnol 86:1473–1484

    PubMed  Article  CAS  Google Scholar 

  9. Ko SR, Choi KJ, Suzuki K, Suzuki Y (2003) Enzymatic preparation of ginsenosides Rg2, Rh1, and F1. Chem Pharm Bull (Tokyo) 51:404–408

    Article  CAS  Google Scholar 

  10. Lee EH, Cho SY, Kim SJ, Shin ES, Chang HK, Kim DH, Yeom MH, Woe KS, Lee J, Sim YC, Lee TR (2003) Ginsenoside F1 protects human HaCaT keratinocytes from ultraviolet-B-induced apoptosis by maintaining constant levels of Bcl-2. J Invest Dermatol 121:607–613

    PubMed  Article  CAS  Google Scholar 

  11. Park CS, Yoo MH, Noh KH, Oh DK (2010) Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 87:9–19

    PubMed  Article  CAS  Google Scholar 

  12. Son JW, Kim HJ, Oh DK (2008) Ginsenoside Rd production from the major ginsenoside Rb1 by beta-glucosidase from Thermus caldophilus. Biotechnol Lett 30:713–716

    PubMed  Article  CAS  Google Scholar 

  13. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 31:1065–1071

    PubMed  Article  Google Scholar 

  14. Yan Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P (2008) Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces bainier. J Microbiol Biotechnol 18:1081–1089

    PubMed  CAS  Google Scholar 

  15. Yang S, Jiang Z, Yan Q, Zhu H (2008) Characterization of a thermostable extracellular beta-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. J Agric Food Chem 56:602–608

    PubMed  Article  CAS  Google Scholar 

  16. Yoshikawa M, Morikawa T, Kashima Y, Ninomiya K, Matsuda H (2003) Structures of new dammarane-type triterpene saponins from the flower buds of Panax notoginseng and hepatoprotective effects of principal ginseng saponins. J Nat Prod 66:922–927

    PubMed  Article  CAS  Google Scholar 

  17. Zanoelo FF, Polizeli Mde L, Terenzi HF, Jorge JA (2004) Beta-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett 240:137–143

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant (No. 2010-0019306) and by the Next-Generation BioGreen 21 Program grant, Rural Development Administration, Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deok-Kun Oh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, YS., Yoo, MH., Lee, GW. et al. Ginsenoside F1 production from ginsenoside Rg1 by a purified β-glucosidase from Fusarium moniliforme var. subglutinans . Biotechnol Lett 33, 2457–2461 (2011). https://doi.org/10.1007/s10529-011-0719-0

Download citation

Keywords

  • Ginsenoside Rg1
  • Ginsenoside F1
  • β-Glucosidase
  • Fusarium moniliforme var. subglutinans
  • Substrate specificity