Skip to main content
Log in

The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The particulate methane monooxygenase (pMMO) of Methylosinus trichosporium OB3b oxidized n-butane and n-pentane and mainly produced (R)-2-butanol and (R)-2-pentanol that comprised 78 and 89% of the product, respectively, indicating that the pro-R hydrogen of the 2-position carbon of n-butane and n-pentane is oriented toward a catalytic site within the substrate binding site of pMMO. The protein cavity adjacent to the catalytic center for pMMO has optimum volume for recognizing n-butane and n-pentane for enantioselective hydroxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  • Burrows KJ, Cornish A, Scott D, Higgins IJ (1984) Substrate specificities of the soluble and particular methane monooxygenases of Methylosinus trichosporium OB3b. J Gen Microbiol 130:3327–3333

    CAS  Google Scholar 

  • Chan SI, Wang VCC, Lai JCHL, Yu SSF, Chen PPY, Chen KHC, Chen CL, Chan MK (2007) Redox potentiometry studies of particulate methane monooxygenase: support for a trinuclear copper cluster active site. Angew Chem Int Ed 46:1992–1994

    Article  CAS  Google Scholar 

  • Corma A, Cavis M, Fornes V, Gonzalez-Alfaro V, Lobo R, Orchilles AV (1997) Cracking behavior of zeolites with connected 12- and 10-member ring channels: the influence of pore structure on product distribution. J Catal 167:438–446

    Article  Google Scholar 

  • Elliot SJ, Zhu M, Tso L, Nguyen HT, Yip JH, Chan SI (1997) Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 119:9949–9955

    Article  Google Scholar 

  • Funhoff EG, Van Beilen JB (2007) Alkane activation by P450 oxygenases. Biocatal Biotransform 25:186–194

    Article  CAS  Google Scholar 

  • Hakemian AS, Kondapalli KC, Telser J, Hoffman BM, Stemmler TL, Rosenzweig AC (2008) The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47:6793–6801

    Article  PubMed  CAS  Google Scholar 

  • Himes RA, Barnese K, Karlin KD (2010) One is lonely and three is a crowd: two coppers are for methane oxidation. Angew Chem Int Ed 49:6714–6716

    Article  CAS  Google Scholar 

  • Keener WK, Arp DJ (1993) Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay. Appl Environ Microbiol 59:2501–2510

    PubMed  CAS  Google Scholar 

  • Kerr JA (1966) Bond dissociation energy by kinetic methods. Chem Rev 66:465–500

    Article  CAS  Google Scholar 

  • Koshland D (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98–104

    Article  PubMed  CAS  Google Scholar 

  • Koyama T, Hayashi Y, Horie H, Kawauchi S, Matsumoto A, Iwase Y, Sakamoto Y, Miyaji A, Motokura K, Baba T (2010) Key role of the pore volume of zeolite for selective production of propylene from olefins. Phys Chem Chem Phys 12:2541–2554

    Article  PubMed  CAS  Google Scholar 

  • Labinger JA (2004) Selective alkane oxidation: hot and cold approaches to a hot problem. J Mol Catal A Chem 220:27–35

    Article  CAS  Google Scholar 

  • Li Z, Chang D (2004) Recent advances in regio- and stereoselective hydroxylation of non-activated carbon atoms. Curr Org Chem 8:1647–1658

    Article  CAS  Google Scholar 

  • Lieberman LL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Loll PJ, Eckenhoff RG (2005) Structural basis for high-affinity volatile anesthetic binding in a natural 4-helix bundle proteins. FASEB J 19:567–576

    Article  PubMed  Google Scholar 

  • Martinho M, Choi DW, Dispirito AA, Antholine WE, Semrau JD, Munch E (2007) Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus bath: evidence for a Diiron center. J Am Chem Soc 129:15783–15785

    Article  PubMed  CAS  Google Scholar 

  • Mas-Ballesté R, Que L Jr (2006) Chemistry: targeting specific C–H bonds for oxidation. Science 312:1885–1886

    Article  PubMed  Google Scholar 

  • Mecozzi S, Rebek J Jr (1998) The 55% solution: a formulation for molecular recognition in the liquid state. Chem Eur J 4:1016–1022

    Article  CAS  Google Scholar 

  • Miyaji A, Suzuki M, Baba T, Kamachi T, Okura I (2009) Hydrogen peroxide as an effecter on the inactivation of particulate methane monooxygenase under aerobic conditions. J Mol Catal B Enzym 57:211–215

    Article  CAS  Google Scholar 

  • Okazaki K, Takada S (2008) Dynamic energy landscape view of coupled binding and protein conformational change: induced-fit versus population-shift mechanisms. Proc Natl Acad Sci USA 105:11182–11187

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Okura I (1990) On the reaction mechanism of alkene epoxidation with Methylosinus trichosporium (OB3b). J Mol Catal 61:113–122

    Article  CAS  Google Scholar 

  • Park S, Shah NN, Taylor RT, Droege MW (1992) Batch cultivation of Methylosinus trichosporium OB3b: II. Production of particulate methane monooxygenase. Biotechnol Bioeng 40:151–157

    Article  PubMed  CAS  Google Scholar 

  • Sugimori D, Ando R, Okura I (1995) Comparison of reactivity of alkane hydroxylation with intact cells and cell-free extracts of Methylosinus trichosporium OB3b. Appl Biochem Biotechnol 53:199–205

    Article  CAS  Google Scholar 

  • Yu SS, Wu LY, Chen KH, Luo WI, Huang DS, Chan SI (2003) The stereospecific hydroxylation of [2,2-2H2]butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 278:40658–40669

    Article  PubMed  CAS  Google Scholar 

  • Zürcher M, Gottschalk T, Meyer S, Bur D, Diederich F (2008) Exploring the flap pocket of the antimalarial target pasmepsin II: the “55% rule” applied to enzymes. ChemMedChem 3:237–240

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Young Scientists (B) (No. 20760527, 23760739), from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and partly by the Cooperative Research Program of Catalysis Research Center (CRC) Hokkaido University (Grant No. 10B2005). We thank Prof. Atsushi Fukuoka (CRC, Hokkaido University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Baba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyaji, A., Miyoshi, T., Motokura, K. et al. The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol. Biotechnol Lett 33, 2241–2246 (2011). https://doi.org/10.1007/s10529-011-0688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0688-3

Keywords

Navigation