Skip to main content

Advertisement

Log in

Silencing the silencer: strategies to inhibit microRNA activity

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Plants and animals microRNAs (miRNAs) have been proposed to be key regulators of many fundamental processes. However defining miRNAs function has been problematic due to the paucity of miRNA loss-of-function mutants. This is likely due to their small gene size and redundancy as most miRNA have highly related family members. Consequently, the analysis of miRNA function has been primarily based on predictive bioinformatic or transgenic gain-of-function approaches. However, a number of new methodologies have been developed able to result in loss-of-function phenotypes. This includes miRNA sponges in animals and target mimicry in plants, both of which sequesters the mature miRNAs, disrupting endogenous miRNA:mRNA target relationships. Furthermore, artificial miRNAs and RNA interference in plants have been shown to be potent silencers of MIRNA genes. We will discuss the strengths and weaknesses of these methodologies which are potentially of great biotechnological use in medicine and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen RS, Li J, Stahle MI, Dubroue′ A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376

    Article  PubMed  CAS  Google Scholar 

  • Allen RS, Li J, Alonso-Peral MM, White RG, Gubler F, Millar AA (2010) MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence 1:1–18

    Article  Google Scholar 

  • Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The MicroRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771

    Article  PubMed  CAS  Google Scholar 

  • Arvey A, Larsson E, Sander C, Leslie CS, Marks DS (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:1–7

    Article  Google Scholar 

  • Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 10:141–148

    Article  PubMed  CAS  Google Scholar 

  • Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  PubMed  CAS  Google Scholar 

  • Couzin J (2008) MicroRNAs make big impression in disease after disease. Science 319:1782–1784

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Lollo B, Freier S, Esau C (2006) Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34:2294–2304

    Article  PubMed  CAS  Google Scholar 

  • Eamens AL, Agius C, Smith NA, Waterhouse PM, Wang M-B (2011) Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Mol Plant 4:157–170

    Article  PubMed  CAS  Google Scholar 

  • Ebert MS, Sharp PA (2010) Emerging roles for natural miRNA sponges. Curr Biol 20:R858–R861

    Article  PubMed  CAS  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  PubMed  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007) Target mimicry provides a new mechanisms for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  PubMed  CAS  Google Scholar 

  • Garcia D (2008) A miRacle in plant development: role of microRNAs in cell differentiation and patterning. Semin Cell Dev Biol 19:586–595

    Article  PubMed  CAS  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  PubMed  CAS  Google Scholar 

  • Guo H-S, Xie Q, Fei J-F, Chua N-H (2005) MicroRNA directs mRNAcleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root formation. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  PubMed  CAS  Google Scholar 

  • Hoffer P, Ivashuta S, Pontes O, Vitins A, Pikaard C, Mroczka A, Wagner N, Voelker T (2011) Posttranscriptional gene silencing in nuclei. Proc Natl Acad Sci USA 108:409–414

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:e57

    Article  PubMed  Google Scholar 

  • Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Ørum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    Article  PubMed  CAS  Google Scholar 

  • Ledford H (2010) Drug giants turn their back on RNA interference. Nature 468:487

    Article  PubMed  CAS  Google Scholar 

  • Li H, Deng Y, Wu T, Subramanian S, Yu O (2010) Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol 153:1759–1770

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Chen YQ (2010) A new mechanism in plant engineering: the potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol Adv 28:301–307

    Article  PubMed  CAS  Google Scholar 

  • Loya CM, Lu CS, Van Vactor D, Fulga TA (2009) Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 6:897–903

    Article  PubMed  CAS  Google Scholar 

  • Mack GS (2007) MicroRNAs get down to business. Nat Biotech 25:631–638

    Article  CAS  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  PubMed  CAS  Google Scholar 

  • Orom UA, Kauppinen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141

    Article  PubMed  CAS  Google Scholar 

  • Overgaard M, Johansen J, Møller-Jensen J, Valentin-Hansen P (2009) Switching off small RNA regulation with trap-mRNA. Mol Microbiol 73:790–800

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D et al (2007) Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13:115–125

    Article  PubMed  CAS  Google Scholar 

  • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M (2008) MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19:3272–3282

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Seitz H (2009) Redefining microRNA targets. Curr Biol 19:870–873

    Article  PubMed  CAS  Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Li Y-SJ, Huang H-D, Shyy Y-JJ, Chien S (2010) MicroRNA: a master regulator of cellular processes for bioengineering system. Annu Rev Biomed Eng 12:1–27

    Article  PubMed  CAS  Google Scholar 

  • Todesco M, Rubio-Samoza I, Paz-Ares J, Weigel D (2010) A collection of target mimics for comprehensive analysis of miRNA function in Arabidopsis thaliana. PLoS Genet 6:1–10

    Article  Google Scholar 

  • Vaistij FE, Elias L, George GL, Jones L (2010) Suppression of microRNA accumulation via RNA interference in Arabidopsis thaliana. Plant Mol Biol 73:391–397

    Article  PubMed  CAS  Google Scholar 

  • Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: Synthesis, mechanism, function, and recent clinical trails. Biochem Biophys Acta 1803:1231–1243

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Australian Research Council (DP0773270) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Millar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichel, M., Li, J. & Millar, A.A. Silencing the silencer: strategies to inhibit microRNA activity. Biotechnol Lett 33, 1285–1292 (2011). https://doi.org/10.1007/s10529-011-0590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0590-z

Keywords

Navigation