Skip to main content
Log in

Genetic engineering of flavonoid pigments to modify flower color in floricultural plants

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Recent advances in genetic transformation techniques enable the production of desirable and novel flower colors in some important floricultural plants. Genetic engineering of novel flower colors is now a practical technology as typified by commercialization of a transgenic blue rose and blue carnation. Many researchers exploit knowledge of flavonoid biosynthesis effectively to obtain unique flower colors. So far, the main pigments targeted for flower color modification are anthocyanins that contribute to a variety of colors such as red, pink and blue, but recent studies have also utilized colorless or faint-colored compounds. For example, chalcones and aurones have been successfully engineered to produce yellow flowers, and flavones and flavonols used to change flower color hues. In this review, we summarize examples of successful flower color modification in floricultural plants focusing on recent advances in techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aida R, Yoshida K, Kondo T, Kishimoto S, Sibata M (2000) Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-redutase gene. Plant Sci 160:49–56

    Article  CAS  PubMed  Google Scholar 

  • Baumann K, Perez-Rodriguez M, Bradley D, Venail J, Bailey P, Jin H, Koes R, Roberts K, Martin C (2007) Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134:1691–1701

    Article  CAS  PubMed  Google Scholar 

  • Boase MR, Lewis DH, Davies KM, Marshall GB, Patel D, Schwinn KE, Deroles SC (2010) Isolation and antisense suppression of flavonoid 3′,5′-hydroxylase modifies flower pigments and colour in cyclamen. BMC Plant Biol 10:107

    Article  PubMed  Google Scholar 

  • D'Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  Google Scholar 

  • Davies KM (2009) Modifying anthocyanin production in flowers. In: Gould K, Davies K, Winefield C (eds) Anthocyanins biosynthesis functions, and applications. Springer, New York, pp 49–83

    Google Scholar 

  • Davies KM, Schwinn KE (2010) Molecular biology and biotechnology of flower pigments. In: Pua EC, Davey MR (eds) Plant developmental biology—biotechnological perspectives. Springer, New York, pp 11–187

    Google Scholar 

  • Davies KM, Bloor SJ, Spiller DB, Deroles SS (1998) Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia. Plant J 13:259–266

    Article  CAS  Google Scholar 

  • Di Stilio VS, Martin C, Schulfer AF, Connelly CF (2009) An ortholog of MIXTA-like2 controls epidermal cell shape in flowers of Thalictrum. New Phytol 183:718–728

    Article  CAS  PubMed  Google Scholar 

  • Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8:655–677

    Article  CAS  PubMed  Google Scholar 

  • Fukusaki E, Kawasaki K, Kajiyama S, An CI, Suzuki K, Tanaka Y, Kobayashi A (2004) Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J Biotechnol 111:229–240

    Article  CAS  PubMed  Google Scholar 

  • Gachon CM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E (2005) Plant metabolic diversity: a regulatory perspective. Trends Plant Sci 10:57–62

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E (2006a) The science of flavonoids. Springer-Verlag, London

    Book  Google Scholar 

  • Grotewold E (2006b) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Han YJ, Kim YM, Lee JY, Kim SJ, Cho KC, Chandrasekhar T, Song PS, Woo YM, Kim JI (2009) Production of purple-colored creeping bentgrass using maize transcription factor genes Pl and Lc through Agrobacterium-mediated transformation. Plant Cell Rep 28:397–406

    Article  PubMed  Google Scholar 

  • Hanumappa M, Choi G, Ryu S, Choi G (2007) Modulation of flower colour by rationally designed dominant-negative chalcone synthase. J Exp Bot 58:2471–2478

    Article  CAS  PubMed  Google Scholar 

  • Henry R (2005) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CABI Publishing, Cambridge

    Book  Google Scholar 

  • Jackson D, Culianez-Macia F, Prescott AG, Roberts K, Martin C (1991) Expression patterns of myb genes from Antirrhinum flowers. Plant Cell 3:115–125

    Article  CAS  PubMed  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  PubMed  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    Article  PubMed  Google Scholar 

  • Luo J, Butelli E, Hill L, Parr A, Niggeweg R, Bailey P, Weisshaar B, Martin C (2008) AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 56:316–326

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678

    Article  CAS  PubMed  Google Scholar 

  • Milkowski C, Strack D (2004) Serine carboxypeptidase-like acyltransferases. Phytochemistry 65:517–524

    Article  CAS  PubMed  Google Scholar 

  • Mishiba K, Yamasaki S, Nakatsuka T, Abe Y, Daimon H, Oda M, Nishihara M (2010) Strict de novo methylation of the 35S enhancer sequence in gentian. PLoS One 5:e9670

    Article  PubMed  Google Scholar 

  • Mitsuda N, Hiratsu K, Todaka D, Nakashima K, Yamaguchi-Shinozaki K, Ohme-Takagi M (2006) Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Plant Biotechnol J 4:325–332

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda N, Umemura Y, Ikeda M et al (2008) FioreDB: a database of phenotypic information induced by the chimeric repressor silencing technology (CRES-T) in Arabidopsis and floricultural plants. Plant Biotechnol 25:37–44

    CAS  Google Scholar 

  • Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, Shoji K, Nitta A, Nishimura M (2009) A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant J 59:437–447

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S (2006) Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Plant Cell Physiol 47:457–470

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Fukuchi-Mizutani M, Miyazaki K, Suzuki K, Tanaka Y (2006) RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol 23:13–18

    CAS  Google Scholar 

  • Nakatsuka T, Nishihara M (2010) UDP-glucose:3-deoxyanthocyanidin 5-O-glucosyltransferase from Sinningia cardinalis. Planta 232:383–392

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K, Yamamura S (2006) Heterologous expression of two gentian cytochrome P450 genes can modulate the intensity of flower pigmentation in transgenic tobacco plants. Mol Breed 17:91–99

    Article  CAS  Google Scholar 

  • Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007a) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka T, Pitaksutheepong C, Yamamura S, Nishihara M (2007b) Induction of differential flower pigmentation patterns by RNAi using promoters with distinct tissue-specific activity. Plant Biotech Rep 1:251–257

    Article  Google Scholar 

  • Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K, Shimada N, Yamamura S, Nishihara M (2008a) Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant Cell Physiol 49:1818–1829

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka T, Mishiba K, Abe Y, Kubota A, Kakizaki Y, Yamamura S, Nishihara M (2008b) Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnol 25:61–68

    CAS  Google Scholar 

  • Nakatsuka T, Sato K, Takahashi H, Yamamura S, Nishihara M (2008c) Cloning and characterization of the UDP-glucose:anthocyanin 5-O-glucosyltransferase gene from blue-flowered gentian. J Exp Bot 59:1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka T, Mishiba K, Kubota A, Abe Y, Yamamura S, Nakamura N, Tanaka Y, Nishihara M (2010) Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J Plant Physiol 167:231–237

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Yonekura-Sakakibara K, Sato T, Kikuchi S, Fukui Y, Fukuchi-Mizutani M, Ueda T, Nakao M, Tanaka Y, Kusumi T, Nishino T (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163–1166

    Article  CAS  PubMed  Google Scholar 

  • Nishihara M, Nakatsuka T (2010) Genetic engineering of novel flower colors in floricultural plants: recent advances via transgenic approaches. Methods Mol Biol 589:325–347

    Article  CAS  PubMed  Google Scholar 

  • Nishihara M, Nakatsuka T, Yamamura S (2005) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett 579:6074–6078

    Article  CAS  PubMed  Google Scholar 

  • Nishihara M, Nakatsuka T, Hosokawa K, Yokoi T, Abe Y, Mishiba K, Yamamura S (2006) Dominant inheritance of white-flowered and herbicide-resistant traits in trangenic gentian plants. Plant Biotechnol 23:25–31

    CAS  Google Scholar 

  • Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Nat Acad Sci USA 103:11075–11080

    Article  CAS  PubMed  Google Scholar 

  • Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L (2010) Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231:1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Quattrocchio F, Baudry A, Lepiniec L, Grotewold E (2006) The regulation of flavonoid biosynthesis. In: Grotewold E (ed) The science of flavonoids. New York, Springer, pp 97–122

    Chapter  Google Scholar 

  • Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851

    Article  CAS  PubMed  Google Scholar 

  • Seitz C, Vitten M, Steinbach P, Hartl S, Hirsche J, Rathje W, Treutter D, Forkmann G (2007) Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochemistry 68:824–833

    Article  CAS  PubMed  Google Scholar 

  • Shimada N, Nakatsuka T, Nishihara M, Yamamura S, Ayabe S, Aoki T (2006) Isolation and characterization of a cDNA encoding polyketide reductase in Lotus japonicus. Plant Biotechnol 23:509–513

    CAS  Google Scholar 

  • Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tiss Org Cult 80:1–24

    Article  CAS  Google Scholar 

  • Tanaka Y, Nakamura N, Togami J (2008a) Altering flower color in transgenic plants by RNAi-mediated engineering of flavonoid biosynthetic pathway. Methods Mol Biol 442:245–257

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008b) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10:5350–5369

    Article  CAS  PubMed  Google Scholar 

  • Ueyama Y, Suzuki K, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y (2002) Molecular and biochemical characterization of torenia flavonoid 3′-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci 163:253–263

    Article  CAS  Google Scholar 

  • Ueyama Y, Katsumoto Y, Fukui Y, Fukuchi-Mizutani M, Ohkawa H, Kusumi T, Iwashita T, Tanaka Y (2006) Molecular characterization of the flavonoid biosynthetic pathway and flower color modification of Nierembergia sp. Plant Biotechnol 23:19–24

    CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • van der Krol AR, Lenting PE, Veenstra J, van der Meer IM, Koes RE, Gerats AGM, Mol JNM ARS (1988) An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869

    Article  Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano GP, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10:1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Winefield C, David H, Swinny E, Zhang H, Arathoon H, Fischer T, Halbwirth H, Stich K, Gosch C, Forkmann G, Davies K (2005) Investigation of the biosynthesis of 3-deoxyanthocyanins in Sinningia cardinalis. Physiol Plant 124:403–531

    Article  Google Scholar 

  • Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K (2010) Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol 51:463–474

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Mori M, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:884–915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from KAKENHI (Grant-in-Aid for Scientific Research; 21658013) and the Programme for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Nishihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishihara, M., Nakatsuka, T. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnol Lett 33, 433–441 (2011). https://doi.org/10.1007/s10529-010-0461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0461-z

Keywords

Navigation