Skip to main content
Log in

Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

To improve production of ethanol from glycerol, the methylotrophic yeast Hansenula polymorpha was engineered to express the pdc and adhB genes encoding pyruvate decarboxylase and aldehyde dehydrogenase II from Zymomonas mobilis, respectively, under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. The ethanol yield was 3.3-fold higher (2.74 g l−1) in the engineered yeast compared with the parent strain (0.83 g l−1). Further engineering to stimulate glycerol utilization in the recombinant strain via expression of dhaD and dhaKLM genes from Klebsiella pneumoniae encoding glycerol dehydrogenase and dehydroxyacetone kinase, respectively, resulted in a 3.7-fold increase (3.1 g l−1) in ethanol yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cheng KK, Zhang JA, Liu DH, Sun Y, Liu HJ, Yang MD, Xu JM (2007) Pilot-scale production 1,3-propanediol using Klebsiella pneumoniae. Proc Biochem 42:740–744

    Article  CAS  Google Scholar 

  • da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  PubMed  Google Scholar 

  • Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829

    Article  CAS  PubMed  Google Scholar 

  • Durnin G, Clomburg J, Yeates Z, Alvarez PJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161

    Article  CAS  PubMed  Google Scholar 

  • Gellissen G (ed) (2002) Hansenula polymorpha—biology and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 10:234–245

    Article  CAS  PubMed  Google Scholar 

  • Guerra E, Chye PP, Berardi E, Piper PW (2005) Hypoxia abolishes transience of the heat-shock response in the methylotrophic yeast Hansenula polymorpha. Microbiology 151:805–811

    Article  CAS  PubMed  Google Scholar 

  • Heo JH, Hong WK, Cho EY, Kim MW, Kim JY, Kim CH, Rhee SK, Kang HA (2003) Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HAS reporter gene. FEMS Yeast Res 4:175–184

    Article  CAS  PubMed  Google Scholar 

  • Hill J, Donald KAG, Griffiths DE (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19:5791

    Article  CAS  PubMed  Google Scholar 

  • Ishcuhk OP, Voronovsky AY, Stasyk OV, Gayda GZ, Gonchar MV, Abbas CA, Sibirny AA (2008) Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res 8:1164–1174

    Article  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    Article  CAS  Google Scholar 

  • Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135

    Article  CAS  PubMed  Google Scholar 

  • Postma E, Verduyn C, Scheffers WA, van Dijken JP (1989) Enzymatic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477

    CAS  PubMed  Google Scholar 

  • Ryabova OB, Chmil OM, Sibirny AA (2004) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4:157–164

    Article  Google Scholar 

  • Slininger PJ, Bothast RJ, Smiley KL (1983) Production of 3-hydroxypropionaldehyde from glycerol. Appl Environ Microbiol 46:62–67

    CAS  PubMed  Google Scholar 

  • Sohn JH (1997) Characterization of telomere-associated ARSs (autonomously replicating sequences) and their use for multiple gene integration in Hansenula polymorpha. Ph.D. Thesis, Korea Advanced Institute of Science and Technology, Taejon, Korea

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    Article  CAS  PubMed  Google Scholar 

  • Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the KRIBB Research Initiative Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Woo Seo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, WK., Kim, CH., Heo, SY. et al. Enhanced production of ethanol from glycerol by engineered Hansenula polymorpha expressing pyruvate decarboxylase and aldehyde dehydrogenase genes from Zymomonas mobilis . Biotechnol Lett 32, 1077–1082 (2010). https://doi.org/10.1007/s10529-010-0259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0259-z

Keywords

Navigation