Removal of selenite from wastewater using microbial fuel cells

Abstract

Simultaneous electricity generation and selenium removal was evaluated in single-chamber microbial fuel cells (MFCs) with acetate and glucose as carbon sources. Power output was not affected by selenite up to 125 mg l−1 with glucose as substrate. Coulombic efficiencies of MFCs with glucose increased from 25% to 38% at 150 mg Se l−1. About 99% of 50 and 200 mg Se l−1 selenite was removed in 48 and 72 h for MFCs fed with acetate and glucose, respectively, demonstrating the potential of using MFC technology for Se remediation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Astratinei V, van Hullebusch E, Lens P (2006) Bioconversion of selenate in methanogenic anaerobic granular sludge. J Environ Qual 35(5):1873–1883

    PubMed  Article  CAS  Google Scholar 

  2. Banuelos GS, Lin ZQ (2005) Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study. Ecotoxicol Environ Safety 62(3):309–316

    PubMed  Article  CAS  Google Scholar 

  3. Catal T, Liu H, Bermek H (2008a) Selenium induces manganese-dependent peroxidase activity by the White-Rot Fungus Bjerkandera adusta (Willdenow) P. Karsten. Biol Trace Elem Res 123(1–3):211–217

    PubMed  Article  CAS  Google Scholar 

  4. Catal T, Li K, Bermek H, Liu H (2008b) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175(1):196–200

    Article  CAS  Google Scholar 

  5. Catal T, Xu S, Li K, Bermek H, Liu H (2008c) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectron 24(4):849–854

    Article  CAS  Google Scholar 

  6. Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40(1):364–369

    PubMed  Article  CAS  Google Scholar 

  7. Fan Y, Hu H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354

    Article  CAS  Google Scholar 

  8. Fujita M, Ike M, Kashiwa M, Hashimoto R, Soda S (2002) Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1. Biotechnol Bioeng 80(7):755–761

    PubMed  Article  CAS  Google Scholar 

  9. Hamilton SF (2004) Review of selenium toxicity in aquatic food chains. Sci Total Environ 326(1–3):1–31

    PubMed  CAS  Google Scholar 

  10. Kashiwa M, Nishimoto S, Takahashi K, Ike M, Fujita M (2000) Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. J Biosci Bioeng 89(6):528–533

    PubMed  Article  CAS  Google Scholar 

  11. Lee JH, Han J, Choi H, Hur HG (2007) Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68(10):1898–1905

    PubMed  Article  CAS  Google Scholar 

  12. Lemly AD (1997) Ecosystem recovery following selenium contamination in a freshwater reservoir. Ecotoxicol Environ Saf 36(3):275–281

    PubMed  Article  CAS  Google Scholar 

  13. Lenz M, Van Hullebusch ED, Hommes G, Corvini PFX, Lens PNL (2008) Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res 42(8–9):2184–2194

    PubMed  Article  CAS  Google Scholar 

  14. Liu H, Logan B (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046

    PubMed  Article  CAS  Google Scholar 

  15. Logan BE, Cheng S, Watson V, Esdadt G (2007) Graphite fiber brush for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3347

    PubMed  Article  CAS  Google Scholar 

  16. Losi ME, Frankenberger WT Jr (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD 1a-I: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63(8):3079–3084

    PubMed  CAS  Google Scholar 

  17. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    PubMed  CAS  Google Scholar 

  18. Luo H, Liu G, Zhang R, Jin S (2008) Phenol degradation in microbial fuel cells. Chem Eng J. doi:101016/jcej200807011

  19. Morita M, Uemoto H, Watanabe A (2007) Reduction of selenium oxyanions in wastewater using two bacterial strains. Eng Life Sci 7(3):235–240

    Article  CAS  Google Scholar 

  20. Morris JM, Jin S (2007) Feasibility of using microbial fuel cell technology in bioremediation of hydrocarbons in groundwater. J Environ Sci Health A Tox Hazard Subst Environ Eng 43(1):18–23

    Google Scholar 

  21. Narasingarao P, Häggblom MM (2007) Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol 73(11):3519–3527

    PubMed  Article  CAS  Google Scholar 

  22. Rege MA, Yonge DR, Mendoza DP et al (1999) Selenium reduction by a denitrifying consortium. Biotechnol Bioeng 62(4):479–484

    PubMed  Article  CAS  Google Scholar 

  23. Riedel GF, Ferrier DP, Sanders JG (1991) Uptake of selenium by freshwater phytoplankton. Water Air Soil Pollut 57–58(1):23–30

    Article  Google Scholar 

  24. Rovira M, Giménez J, Martínez M et al (2008) Sorption of selenium (IV) and selenium (VI) onto natural iron oxides: goethite and hematite. J Hazard Mater 150(2):279–284

    PubMed  Article  CAS  Google Scholar 

  25. Safavi A, Sedghy HR, Shams E (1999) Kinetic spectrophotometric determination of trace amounts of selenium and vanadium. Fresenius J Anal Chem 365(6):504–510

    Article  CAS  Google Scholar 

  26. Skorupa JP (1998) Selenium poisoning of fish and wildlife in nature: lessons from twelve real-world examples. In: Frankenberger W, Engberg RA (eds) Environmental chemistry of selenium. Marcel Dekker Inc, New York, pp 315–354

    Google Scholar 

  27. Sukkasem C, Xu S, Park S, Boonsawang P, Liu H (2008) Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res 42(19):4743–4750

    PubMed  Article  CAS  Google Scholar 

  28. Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14(3–4):329–336

    Article  CAS  Google Scholar 

  29. Yamada A, Miyashita M, Inoue K, Matsunaga T (1997) Extracellular reduction of selenite by a novel marine photosynthetic bacterium. Appl Microbiol Biotechnol 48(3):367–373

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the U.S. National Science Foundation CBET 0828544 and the U.S. Department of Transportation through Western Regional Sungrant Initiative.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Catal, T., Bermek, H. & Liu, H. Removal of selenite from wastewater using microbial fuel cells. Biotechnol Lett 31, 1211–1216 (2009). https://doi.org/10.1007/s10529-009-9990-8

Download citation

Keywords

  • Electricity generation
  • Microbial fuel cell
  • Selenium removal
  • Wastewater treatment