Skip to main content
Log in

High-level expression of non-glycosylated and active staphylokinase from Pichia pastoris

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Staphylokinase (SAK) is a promising thrombolytic agent for treating blood-clotting disorders. Recombinant SAK (rSAK) was produced after integration of the gene into Pichia pastoris genome. The recombinant Pichia carrying multiple insertions of the SAK gene yielded high-level (~1 g/l) of extracellular glycosylated rSAK (~18 kDa) with negligible plasminogen activation activity. Addition of tunicamycin during the induction phase resulted in expression of non-glycosylated and highly active rSAK (~15 kDa) from the same clone. Two simple steps of ion-exchange chromatography produced an homogenous rSAK of >95% purity which suitable for future structural and functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bayley DP, Kalmokoff ML, Jarrell KF (1993) Effect of bacitracin on flagellar assembly and presumed glycosylation of the flagellins of Methanococcus deltae. Arch Microbiol 160:179–185

    CAS  Google Scholar 

  • Cheng Y, Li Y, Liu B, Guo L (1998) Cloning and secretory expression of staphylokinase in Streptomyces lividans. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 20:428–432

    PubMed  CAS  Google Scholar 

  • Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology 11:905–910

    Article  PubMed  CAS  Google Scholar 

  • Grella DK, Catsellino FJ (1997) Activation of human plasminogen by Staphylokinase. Direct evidence that preformed plasmin is necessary for activation to occur. Blood 89:1585–1589

    PubMed  CAS  Google Scholar 

  • Grinna LS, Tschopp JF (1989) Size distribution and general structural features of N-linked oligosaccharides from the methylotropic yeast, Pichia pastoris. Yeast 5:107–115

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge PR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  PubMed  CAS  Google Scholar 

  • Luczak M, Bugajewska A, Wojtaszek P (2008) Inhibitors of protein glycosylation or secretion change the pattern of extracellular proteins in suspension-cultured cells of Arabidopsis thaliana. Plant Physiol Biochem 46:962–969

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Chatani E, Koyama T, Sugiura M, Izumi H, Hayashi R (2004) Indiscriminate glycosylation of procarboxypeptidase Y expressed in Pichia pastoris. Carbohyd Res 339:1041–1045

    Article  CAS  Google Scholar 

  • Miele RG, Prorok M, Costa VA, Castellino FJ (1999) Glycosylation of Asparagine-28 of recombinant Staphylokinase with high-mannose-type oligosaccharides results in a protein with highly attenuated plasminogen activator activity. J Biol Chem 274:7769–7776

    Article  PubMed  CAS  Google Scholar 

  • Nagnath M, Soorapaneni S, Rewanwar S, Kotwal P, Prasad B, Mandal G, Padmanabhan S (2009) High yielding recombinant Staphylokinase in bacterial expression system. Cloning, expression, purification and activity studies. Protein Expr Purif 64:69–75

    Article  CAS  Google Scholar 

  • Rabijns A, De Bondt HL, De Ranter C (1997) Three-dimensional structure of Staphylokinase, a plasminogen activator with therapeutic potential. Nature Struct Biol 4:357–360

    Article  PubMed  CAS  Google Scholar 

  • Rajamohan G, Dahiya M, Mande SC, Dikshit KL (2002) Function of the 90-loop (Thr90–Glu100) region of staphylokinase in plasminogen activation probed through site-directed mutagenesis and loop deletion. Biochem J 365:379–389

    Article  PubMed  CAS  Google Scholar 

  • Ren D, Li D, Yang W, Li Y, Gou X, Liang B, Li B, Wu Q (2008) Novel preparation protocol for the expression and purification of recombinant staphylokinase. Biotechnol Appl Biochem 51:9–13

    Article  PubMed  CAS  Google Scholar 

  • Roland C, Callewaert NLM, Geysens SCJ (2004) Protein glycosylation modification in Pichia pastoris. United States Patent 6803225

  • Romanos M, Scorer C, Sreekrishna K, Clare J (1998) Methods in molecular biology. In Higgins DR, Cregg JM (eds) Pichia protocols, The generation of multicopy recombinant strains, vol 103. Humana Press Inc, NJ, pp 55–72

  • Roy N, Padmanabhan S, Smith M, Shi L, Navre M, Das G (1999) Expression of human gelatinase B in Pichia pastoris. Protein Expr Purif 16:324–330

    Article  PubMed  CAS  Google Scholar 

  • Sako T (1985) Overproduction of staphylokinase in Escherichia coli and its characterization. Eur J Biochem 149:557–563

    Article  PubMed  CAS  Google Scholar 

  • Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high level foreign gene expression. Biotechnology 12:181–184

    Article  PubMed  CAS  Google Scholar 

  • Sebban-Kreuzer C, Deprez-Beauclair P, Berton A, Crenon I (2006) High-level expression of nonglycosylated human pancreatic lipase-related protein 2 in Pichia pastoris. Protein Expr Purif 49:284–291

    Article  PubMed  CAS  Google Scholar 

  • Sinnaeve P, Van de Werf F (2001) Thrombolytic therapy. State of the art. Thromb Res 103:71–79

    Article  Google Scholar 

  • Su H, Zhang Y, He J, Mo W, Zhang Y, Tao X, Song H (2004) Construction and characterization of novel staphylokinase variants with antiplatelet aggregation activity and reduced immunogenicity. Acta Biochimi Biophys Sin 36:336–342

    Article  CAS  Google Scholar 

  • Tsikouris JP, Tsikouris AP (2001) A review of available fibrin-specific thrombolytic agents used in acute myocardial infarction. Pharmacotherapy 21:207–217

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Sun P, O’Gorman M, Tai T, Paller AS (2001) Epidermal growth factor receptor glycosylation is required for ganglioside GM3 binding and GM3-mediated suppression [correction of suppression] of activation. Glycobiology 11:515–522

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Castellino FJ, Wong S (2003) A fast-acting, modular-structured staphylokinase fusion with kringle-1 from human plasminogen as the fibrin-targeting domain offers improved clot lysis efficacy. J Biol Chem 278:18199–18206

    Article  PubMed  CAS  Google Scholar 

  • Ye R, Kim JH, Kim B, Szarka S, Sihota E, Wong SL (1999) High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol Bioeng 62:87–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We sincerely thank Dr. Kamal Sharma, Managing director, Lupin Ltd. for his constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Padmanabhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apte-Deshpnade, A., Mandal, G., Soorapaneni, S. et al. High-level expression of non-glycosylated and active staphylokinase from Pichia pastoris . Biotechnol Lett 31, 811–817 (2009). https://doi.org/10.1007/s10529-009-9938-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-9938-z

Keywords

Navigation