Skip to main content
Log in

Quantitation of non-amplified genomic DNA by bead-based hybridization and template mediated extension coupled to alkaline phosphatase signal amplification

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Klenow I polymerase activity was combined with solid phase DNA hybridization to detect non-amplified genomic DNA (gDNA) sequences from Escherichia coli. Aminopropyl-controlled pore glass surface-bound oligonucleotides were hybridized to fragmented gDNA. The template-mediated extension at the 3′-terminus of the immobilized probe was then promoted in the presence of Klenow I polymerase and digoxigenin-labeled nucleotides. Detection of the extended probes was accomplished with an anti-digoxigenin alkaline phosphatase conjugate protocol coupled to colorimetric or fluorescent detection. Using the colorimetric protocol, the proof-of-concept was established. The fluorescence-based methodology, on the other hand, provided the basis for a quantitative interpretation of the data, affording a detection limit of 5 pM gDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almadidy A, Watterson J, Piunno PAE, Raha S, Foulds IV, Horgen PA, Castle A, Krull U (2002) Direct selective detection of genomic DNA from coliform using a fiber optic biosensor. Anal Chim Acta 461:37–47

    Article  CAS  Google Scholar 

  • Arora K, Prabhakar N, Chand S, Malhotra BD (2007) Escherichia coli genosensor based on polyaniline. Anal Chem 79:6152–6158

    Article  CAS  PubMed  Google Scholar 

  • Avarre JC, de Lajudie P, Bena G (2007) Hybridization of genomic DNA to microarrays: a challenge for the analysis of environmental samples. J Microbiol Methods 69:242–248

    Article  CAS  PubMed  Google Scholar 

  • Bockisch B, Grunwald T, Spillner E, Bredehorst R (2005) Immobilized stem-loop structured probes as conformational switches for enzymatic detection of microbial 16S rRNA. Nucleic Acids Res 33:e101

    Article  PubMed  Google Scholar 

  • Campa D, Tavanti A, Gemignani F, Mogavero CS, Bellini I, Bottari F, Barale R, Landi S, Senesi S (2008) DNA microarray based on arrayed-primer extension technique for identification of pathogenic fungi responsible for invasive and superficial mycoses. J Clin Microbiol 46:909–915

    Article  CAS  PubMed  Google Scholar 

  • Del Giallo ML, Lucarelli F, Cosulich E, Pistarino E, Santamaria B, Marrazza G, Mascini M (2005) Steric factors controlling the surface hybridization of PCR amplified sequences. Anal Chem 77:6324–6330

    Article  CAS  PubMed  Google Scholar 

  • Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541

    Article  CAS  PubMed  Google Scholar 

  • Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128:14044–14046

    Article  CAS  PubMed  Google Scholar 

  • Fixe F, Dufva M, Telleman P, Christensen CBV (2004) Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Res 32:e9

    Article  CAS  PubMed  Google Scholar 

  • Hahn S, Mergenthaler S, Zimmermann BHolzgreve W (2005) Nucleic acid based biosensors: the desires of the user. Bioelectrochemistry-NABB 2003 new trends in nucleic acid based biosensors 67:151–154

  • Hempen C, Karst U (2006) Labeling strategies for bioassays. Anal Bioanal Chem 384:572–583

    Article  CAS  PubMed  Google Scholar 

  • Hill HD, Vega RA, Mirkin CA (2007) Nonenzymatic detection of bacterial genomic DNA using the bio bar code assay. Anal Chem 79:9218–9223

    Article  PubMed  Google Scholar 

  • Inoue J, Shigemori Y, Mikawa T (2006) Improvements of rolling circle amplification (RCA) efficiency and accuracy using Thermus thermophilus SSB mutant protein. Nucleic Acids Res 34:e69

    Article  PubMed  Google Scholar 

  • Kinoshita K, Fujimoto K, Yakabe T, Saito S, Hamaguchi Y, Kikuchi T, Nonaka K, Murata S, Masuda D, Takada W, Funaoka S, Arai S, Nakanishi H, Yokoyama K, Fujiwara K, Matsubara K (2007) Multiple primer extension by DNA polymerase on a novel plastic DNA array coated with a biocompatible polymer. Nucleic Acids Res 35:e3

    Article  PubMed  Google Scholar 

  • Lermo A, Campoy S, Barbe J, Hernandez S, Alegret S, Pividori MI (2007) In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens. Biosens Bioelectron 22:2010–2017

    Article  CAS  PubMed  Google Scholar 

  • Lermo A, Zacco E, Barak J, Delwiche M, Campoy S, Barbe J, Alegret S, Pividori MI (2008) Towards Q-PCR of pathogenic bacteria with improved electrochemical double-tagged genosensing detection. Biosens Bioelectron 23:1805–1811

    Article  CAS  PubMed  Google Scholar 

  • Li ZP, Li W, Cheng YQ, Hao LT (2008) Chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms on a solid surface using target-primed rolling circle amplification. Analyst 133:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Martins SAM, Prazeres DMF, Fonseca LP, Monteiro GA (2008) Chemiluminescent bead-based hybridization assay for the detection of genomic DNA from E-coli in purified plasmid samples. Anal Bioanal Chem 391:2179–2187

    Article  CAS  PubMed  Google Scholar 

  • Minunni M, Tombelli S, Fonti J, Spiriti M, Mascini M (2005) Detection of fragmented genomic DNA by PCR-free piezoelectric sensing using a denaturation approach. J Am Chem Soc 127:7966–7967

    Article  CAS  PubMed  Google Scholar 

  • Minunni M, Tombelli S, Mascini M (2007) A biosensor approach for DNA sequences detection in non-amplified genomic DNA. Anal Lett 40:1360–1370

    Article  CAS  Google Scholar 

  • Steemers FJ, Chang WH, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33

    Article  CAS  PubMed  Google Scholar 

  • Su X, Teh HF, Lieu XH, Gao ZQ (2007) Enzyme-based colorimetric detection of nucleic acids using peptide nucleic acid-immobilized microwell plates. Anal Chem 79:7192–7197

    Article  CAS  PubMed  Google Scholar 

  • Thieme D, Neubauer P, Nies DH, Grass G (2008) Sandwich hybridization assay for sensitive detection of dynamic changes in mRNA transcript levels in crude Escherichia coli cell extracts in response to copper ions. Appl Environ Microbiol 74:7463–7470

    Article  CAS  PubMed  Google Scholar 

  • Vora GJ, Meador CE, Stenger DA, Andreadis JD (2004) Nucleic acid amplification strategies for DNA microarray-based pathogen detection. Appl Environ Microbiol 70:3047–3054

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Kawde AN, Musameh M, Rivas G (2002) Dual enzyme electrochemical coding for detecting DNA hybridization. Analyst 127:1279–1282

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Monteiro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, S.A.M., Prazeres, D.M.F., Fonseca, L.P. et al. Quantitation of non-amplified genomic DNA by bead-based hybridization and template mediated extension coupled to alkaline phosphatase signal amplification. Biotechnol Lett 32, 229–234 (2010). https://doi.org/10.1007/s10529-009-0149-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0149-4

Keywords

Navigation