Biotechnology Letters

, Volume 32, Issue 2, pp 315–319 | Cite as

Conversion of α-amyrin into centellosides by plant cell cultures of Centella asiatica

  • Liliana Hernandez-Vazquez
  • Mercedes Bonfill
  • Elisabeth Moyano
  • Rosa M. Cusido
  • Arturo Navarro-Ocaña
  • Javier Palazon
Original Research Paper

Abstract

Plant cell cultures of Centella asiatica produce small quantities of centellosides: madecassosid > asiaticosid > madecassic acid > asiatic acid. To obtain a more efficient production system of these bioactive triterpenoid compounds, we developed a process where the substrate, α-amyrin, was converted into centellosides by cell suspensions of C. asiatica. When α-amyrin in acetone was added at 0.01 mg/ml−1 to the culture medium, together with the permeabilizing agent DMSO, after 7 days nearly 50% had penetrated the plant cells, of which almost 84% was transformed into centellosides. The system therefore efficiently converts α-amyrin into centellosides, thus opening a new possibility for the production of these compounds.

Keywords

α-Amyrin Asiaticoside Centella asiatica Madecassoside 

References

  1. Bonfill M, Mangas S, Cusidó RM, Osuna L, Piñol MT, Palazon J (2006) Identification of triterpenoid compounds of Centella asiatica by thin-layer chromatography and mass spectrometry. Biomed Chromatogr 20:151–153CrossRefPubMedGoogle Scholar
  2. Faria JMS, Nunes IS, Figueiredo AC, Pedro LG, Trindale H, Barroso JG (2009) Biotransformation of menthol and geraniol by hairy root cultures of Anetum greveolens: effect on growth and volatile components. Biotechnol Lett 31:897–903CrossRefPubMedGoogle Scholar
  3. Kim OT, Ahn JC, Hwang SJ, Hwang B (2005a) Cloning and expression of a farnesyl diphosphate synthase in Centella asiatica (L.) Urban. Mol Cell 19:294–299CrossRefGoogle Scholar
  4. Kim OT, Seong NS, Kim MY, Hwang B (2005b) Isolation and characterization of squalene synthase cDNA from Centella asiatica (L.) Urban. J Plant Biol 48:263–269CrossRefGoogle Scholar
  5. Kim OT, Kim MY, Huh SM, Bai DG, Ahn JC, Hwang B (2005c) Cloning of a cDNA probably encoding oxidosqualene cyclase associated with asiaticoside biosynthesis from Centella asiatica (L.) Urban. Plant Cell Rep 24:304–311CrossRefPubMedGoogle Scholar
  6. Kreis W, Hoelz H, May U, Reibhard E (1990) Storage of cardenolides in Digitalis lanata cells. Effect of dimethyl sulfoxide (DMSO) on cardenolide uptake and release. Plant Cell Tiss Organ Cult 20:191–199Google Scholar
  7. Lee J, Jung E, Kim Y, Park J, Park J, Hong S, Kim J, Hyun C, Kim YS, Park D (2006) Asiaticoside induces human collagen I synthesis through TGFbeta receptor I kinase (TbetaRI kinase)-independent Smad signaling. Planta Med 72:324–328CrossRefPubMedGoogle Scholar
  8. Lu L, Ying K, Wei SM, Fang Y, Liu YL, Lin HF, Ma LJ, Mao YM (2004) Asiaticoside induction for cell-cycle progression, proliferation and collagen synthesis in human dermal fibroblasts. Int J Dermatol 43:801–807CrossRefPubMedGoogle Scholar
  9. Mangas S, Bonfill M, Osuna L, Moyano L, Tortoriello J, Cusido RM, Piñol MT, Palazon J (2006) The effect of methyl jasmonate on triterpene and sterol metabolism of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry 67:2041–2049CrossRefPubMedGoogle Scholar
  10. Mangas S, Moyano E, Osuna L, Cusido RM, Bonfill M, Palazon J (2008) Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. Biotechnol Lett 30:1853–1859CrossRefPubMedGoogle Scholar
  11. Mangas S, Moyano E, Hernandez-Vazquez L, Bonfill M (2009) Centella asiatica (L) Urban: An updated approach. In: Palazon J, Cusido RM (eds) Plant secondary terpenoids. Research Signpost, Trivandrum, pp 55–74Google Scholar
  12. Nath S, Buragohain AK (2005) Establishment of callus and cell suspension cultures of Centella asiatica. Biol Plant 49:411–413CrossRefGoogle Scholar
  13. Omar R, Abdullah MA, Hasan MA, Marziah M, Mazlina MKS (2005) Optimization and elucidation of interactions between ammonium, nitrate and phosphate in Centella asiatica cell culture using response surface methodology. Biotechnol Bioprocess Eng 10:192–197CrossRefGoogle Scholar
  14. Wahl F, An G, Lee JM (1995) Effects of domethyl sulfoxide on heavy chain monoclonal antibody production from plant cell culture. Biotechnol Lett 17:463–468CrossRefGoogle Scholar
  15. Widholm JM (1972) The use of fluorecein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194PubMedGoogle Scholar
  16. Zhong JJ, Meng XD, Zhang YH, Liu S (1997) Effective release of ginseng saponins from suspension cells of Panax notoginseng. Biotech Tech 11:241–243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Liliana Hernandez-Vazquez
    • 1
  • Mercedes Bonfill
    • 1
  • Elisabeth Moyano
    • 2
  • Rosa M. Cusido
    • 1
  • Arturo Navarro-Ocaña
    • 3
  • Javier Palazon
    • 1
  1. 1.Laboratori de Fisiologia Vegetal, Facultat de FarmaciaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Ciencies Experimentals i de la SalutUniversitat Pompeu FabraBarcelonaSpain
  3. 3.Departamento de Alimentos y Biotecnologia, Facultad de Quimica E-UNAMCd. UniversitariaMexicoMexico

Personalised recommendations