Skip to main content
Log in

Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Microbial fuel cell (MFC) based sensing was explored to provide for the development of an in situ bioremediation monitoring approach for substrate concentrations and microbial respiration rates. MFC systems were examined in column systems where Shewanella oneidensis MR1 used an external electron acceptor (an electrode) to metabolize lactate (a bioremediation additive) to acetate. Column systems were operated with varying influent lactate concentrations (0–41 mM) and monitored for current generation (0.01–0.39 mA). Biological current generation paralleled bulk phase lactate concentration both in the influent and in the bulk phase at the anode; current values were correlated to lactate concentration at the anode (R 2 = 0.9), The electrical signal provided real-time information for electron donor availability and biological activity. These results have practical implications for efficient and inexpensive real-time monitoring of in situ bioremediation processes where information on substrate concentrations is often difficult to obtain and where information on the rate and nature of metabolic processes is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RT, Vrionis HA, Ortiz-Bernad I et al (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microb 69:5884–5891

    Article  CAS  Google Scholar 

  • Bencheikh-Latmani R, Williams SM, Haucke L et al (2005) Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. Appl Environ Microb 71:7453–7460

    Article  CAS  Google Scholar 

  • Chu M, Kitaradis PK, McCarty PL (2003) Effects of biomass accumulation on microbially enhanced dissolution of a PCE pool: a numerical simulation. J Contam Hydrol 65:79–100

    Article  PubMed  CAS  Google Scholar 

  • Dybas MJ, Barcelona M, Bezborodnikov S et al (1998) Pilot-scale evaluation of bioaugmentation for in-situ remediation of a carbon tetrachloride contaminated aquifer. Environ Sci Technol 32:3598–3611

    Article  CAS  Google Scholar 

  • Freguia S, Rabaey K, Yuan ZG et al (2007) Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ Sci Technol 41:2915–2921

    Article  PubMed  CAS  Google Scholar 

  • Guerin TF, Mondido M, McClenn B et al (2001) Application of resazurin for estimating abundance of contaminant-degrading micro-organisms. Lett Appl Microbiol 32:340–345

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Hyun MS, Chang IS et al (1999) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbol Biotech 9:365–367

    CAS  Google Scholar 

  • Liu H, Cheng SA, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  PubMed  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: Methodology and technology. Environ Sci Technol 40:5181–5192

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotech 17:327–332

    Article  PubMed  CAS  Google Scholar 

  • Picardal F, Arnold RG, Huey BB (1995) Effects of electron-donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella-putrefaciens-200. Appl Environ Microb 61:8–12

    CAS  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD et al (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535

    Article  PubMed  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK et al (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Article  PubMed  CAS  Google Scholar 

  • Salanitro JP, Johnson PC, Spinnler GE et al (2000) Field scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sci Technol 34:4152–4162

    Article  CAS  Google Scholar 

  • Semprini L, McCarty PL (1991) Comparison between model simulations and field results for in situ biorestoration of chlorinated aliphatics. 1. Biostimulation of methanotrophic bacteria. Ground Water 29:365–374

    Article  CAS  Google Scholar 

  • Sung Y, Fletcher KF, Ritalaliti KM et al (2006) Geobacter lovleyi sp nov strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microb 72:2775–2782

    Article  CAS  Google Scholar 

  • Thullner M, Schroth MH, Zeyer J et al (2004) Modeling of a microbial growth experiment with bioclogging in a two-dimensional saturated porous media flow field. J Contam Hydrol 70:37–62

    Article  PubMed  CAS  Google Scholar 

  • Turner APF (2000) Biochemistry–Biosensors sense and sensitivity. Science 290:1315–1317

    Article  PubMed  CAS  Google Scholar 

  • U.S. Census Bureau (2002) Pollution abatement costs and expenditures: 1999. U.S. Government Printing Office, Washington DC

    Google Scholar 

  • Wu WM, Carley J, Gentry Tf et al (2006) Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Rizlan Bernier-Latmani, of EPFL in Lausanne, Switzerland donated the S. oneidensis MR1 culture and provided advice on handling and usage. Mr. Ernst Bleiker of ETH Zurich provided the LabView program and insight into the electrical system. Prof. Dr. J. Zeyer and Dr. Martin Schroth of ETH Zurich provided access to their Ion Chromatography System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Tront.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tront, J.M., Fortner, J.D., Plötze, M. et al. Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment. Biotechnol Lett 30, 1385–1390 (2008). https://doi.org/10.1007/s10529-008-9707-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9707-4

Keywords

Navigation