Skip to main content
Log in

Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A phytoene synthase gene SePSY was isolated from euhalophyte Salicornia europaea L. The 1655 bp full-length SePSY has an open reading frame of 1257 bp and encodes a 419-amino acid protein. The overexpression of SePSY enhanced the growth of transgenic Arabidopsis. When the plants were exposed to 100 mM NaCl, the photosynthesis rate and photosystem II activity (Fv/Fm) increased from 92% to 132% and from 9.3% to 16.6% in the transgenic lines than in the wild-type, respectively. The transgenics displayed higher activities of SOD and POD and lower contents of H2O2 and MDA than the WT. In conclusion, the transgenic lines showed higher tolerance to salt stress than WT plants by increased photosynthesis efficiency and antioxidative capacity. This is the first report about improving the salt tolerance by genetic manipulation of carotenoid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Critical Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bartley GE, Scolnik PA (1994) Molecular biology of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 45:287–301

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Botany 91:179–194

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cunningham JFX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol 49:557–583

    Article  CAS  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  PubMed  CAS  Google Scholar 

  • Demming-Adams B (1990) Carotenoids and photoprotection in plants: a role of the xanthophylls zeaxanthin. Biochem Biophys Acta 1020:1–24

    Article  Google Scholar 

  • Izumi CM, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels: a signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch H, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048

    Article  PubMed  CAS  Google Scholar 

  • Krinsky NI (1989) Antioxidant functions of carotenoids. Free Radic Biol Med 7:617–635

    Article  PubMed  CAS  Google Scholar 

  • Li FQ, Vallabhaneni R, Wurtzel ET (2007) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic-stress-induced root carotenogenesis. Plant Physiol 10.1104/pp.107.111120

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  PubMed  CAS  Google Scholar 

  • Römer S, Fraser PD (2005) Recent advances in carotenoid biosynthesis regulation and manipulation. Planta 221:305–308

    Article  PubMed  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–579

    Article  PubMed  CAS  Google Scholar 

  • Salvini M, Bernini A, Fambrini M, Pugliesi C (2005) cDNA cloning and expression of the phytoene synthase gene in sunflower. J Plant Physiol 162:479–484

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Sandmann G (2001) Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. Trends Plant Sci 6:13–17

    Article  Google Scholar 

  • Schledz M, Al-Babili S, Lintig J, Haubruck H, Rabbani S, Kleinig H, Beyer P (1996) Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering. Plant J 10:781–792

    Article  PubMed  CAS  Google Scholar 

  • Scolnik PA, Bartley GE (1994) Nucleotide sequence of an Arabidopsis cDNA for phytoene synthase. Plant Physiol 104:1471–1472

    Article  PubMed  CAS  Google Scholar 

  • Tao NG, Hu ZY, Liu Q, Xu J, Cheng YJ, Guo LL, Guo WW, Deng XX (2007) Expression of phytene synthase gene (Psy) is enhanced during fruit ripening of Cara Cara navel orange (Citrus sinensis Osbeck). Plant Cell Rep 26:837–843

    Article  PubMed  CAS  Google Scholar 

  • Telfer A (2005) Too much light? How β-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4:950–956

    Article  PubMed  CAS  Google Scholar 

  • Ye XD, Al-Babili S, Kloti A, Zhang J, Lucca P (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National High Technology and Research Development Program of China (“863” project) (Grant No.2003AA627010 and No.2007AA091705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinxin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, H., Li, Y. & Zhou, S. Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnol Lett 30, 1501–1507 (2008). https://doi.org/10.1007/s10529-008-9705-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9705-6

Keywords

Navigation