Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel

Abstract

Exopolysaccharides (EPS) produced by Gordonia alkanivorans CC-JG39 was used to stimulate cell floating, cell growth, and diesel biodegradation of indigenous or commercial-available, diesel-degrading bacteria. Addition of EPS-containing supernatant into the culture medium resulted in floatation of the non-floating bacteria and allowed a 40–45% and 38–42% increase in diesel degradation and cell growth, respectively. The EPS-stimulating effect on cell growth and diesel degradation positively correlated with the EPS dosage. Thus, the EPS may act as a biostimulant for bioremediation of oil-contaminated water or soil.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abalos A, Vinas M, Sabate J, Manresa MA, Solanas AM (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15:249–260

    PubMed  Article  CAS  Google Scholar 

  2. Bai G, Brusseau ML, Miller RM (1997) Biosurefactant-enchanced removal of residual hydrocarbon from soil. J Contam Hydrol 25:157–170

    Article  CAS  Google Scholar 

  3. Bushnell LD, Hass HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673

    PubMed  CAS  Google Scholar 

  4. Calvo C, Martínez-Checa F, Mota A, Quesada E (1998) Effect of cations, pH and sulfate content on the viscosity and emulsifying activity of the Halomonas eurihalina exopolysaccharide. J Ind Microbiol Biotechnol 20:205–209

    Article  CAS  Google Scholar 

  5. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    PubMed  CAS  Google Scholar 

  6. Costerton JW (1985) The role of bacterial exopolysaccharides in nature and disease. Dev Ind Microbiol 26:249–261

    CAS  Google Scholar 

  7. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  8. Hino S, Watanabe K, Tatkahashi N (1997) Isolation and characterization of slime-producing bacteria capable of utilizing petroleum hydrocarbons as a sole carbon source. J Ferment Bioeng 84:528–531

    Article  CAS  Google Scholar 

  9. Iyer A, Mody K, Jha B (2006) Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microb Technol 38:220–222

    Article  CAS  Google Scholar 

  10. Lin TC, Young CC, Ho MJ, Yeh MS, Chou CL, Wei YH, Chang JS (2005) Characterization of floating activity of indigenous diesel-assimilating bacterial isolates. J Biosci Bioeng 99:466–472

    PubMed  Article  CAS  Google Scholar 

  11. Martínez-Checa F, Toledo FL, Vilchez R, Quesada E, Calvo C (2002) Yield production, chemical composition, and functional properties of emulsifier H-28 in media containing various hydrocarbons. Appl Microbiol Biotechnol 58:358–363

    PubMed  Article  Google Scholar 

  12. Martínez-Checa F, Toledo FL, Mabrouki KE, Quesada E, Calvo C (2007) Characteristics of bioemulsifer V2-7 synthesized in culture media added of hydrocarbons: chemical composition, emulsifying activity and rheological properties. Bioresour Technol 98:3130–3135

    PubMed  Article  Google Scholar 

  13. Monsigny MC, Petit C, Roche AC (1988) Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal Chem 175:525–530

    CAS  Google Scholar 

  14. Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  15. Murray RGE, Wood WA, NR Krieg, Gerhardt P (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, p 31

    Google Scholar 

  16. Noordman WH, Janssen DB (2002) Rhamnolipid stimulateds uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508

    PubMed  Article  CAS  Google Scholar 

  17. Ron E, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    PubMed  Article  CAS  Google Scholar 

  18. Sutherland IW (1990) Biotechnology of microbial exopolysaccharides. Cambridge University Press, Cambridge, London, p 163

    Google Scholar 

  19. Venosa AD, Zhu X (2003) Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci Technol Bull 8:163–178

    Article  CAS  Google Scholar 

  20. Wolfaardt GM, Lawrence JR, Headley JV, Robarts RD, Caldwell DE (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb Ecol 27:279–291

    Article  CAS  Google Scholar 

  21. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organics. Microb Ecol 35:213–223

    PubMed  Article  CAS  Google Scholar 

  22. Young CC, Lin TC, Yeh MS, Shen FT, Chang JS (2005) Identification and kinetic characteristics of an indigenous diesel-degrading Gordonia alkanivorans strain. World J Microbiol Biotechnol 21:1409–1414

    Article  Google Scholar 

  23. Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support from Taiwan’s Ministry of Economic Affairs under Grant no. 95-EC-17-A-10-S1-0013.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chiu-Chung Young.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ta-Chen, L., Chang, J. & Young, C. Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel. Biotechnol Lett 30, 1201–1206 (2008). https://doi.org/10.1007/s10529-008-9667-8

Download citation

Keywords

  • Biostimulation
  • Diesel biodegradation
  • Exopolysaccharides
  • Floatation activity
  • Gordonia alkanivorans