Skip to main content
Log in

Site-directed mutagenesis of substrate binding sites of azoreductase from Rhodobacter sphaeroides

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Comparison of three-dimensional structures of flavin-dependent azoreductases revealed two conserved loops around the flavin mononucleotide (FMN) cofactor. Tyr74, His75 and Lys109 in the two loops of azoreductase AZR from Rhodobacter sphaeroides were replaced with Trp, Asn and Ala/His by site-directed mutagenesis, respectively. The optimal pH values of K109H and H75N were pH 6, and those of K109A and Y74W were pH 9. The optimal temperature (30°C) was not affected by mutation. Positively charged residues at position 109 is critical for the binding of methyl red. K109 might only be involved in the binding of the 2′-phosphate group of NADPH and have no effect on the binding of NADH. Y74W and H75N mutations decreased the binding of methyl red/nitrofurazone and had no affect on the binding of NADPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bellamacina CR (1996) The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J 10:1257–1269

    PubMed  CAS  Google Scholar 

  • Bottoms CA, Smith PE, Tanner JJ (2002) A structurally conserved water molecule in Rossmann fold dinucleotide-binding domains. Protein Sci 11:2125–2137

    Article  PubMed  CAS  Google Scholar 

  • Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7:101–111

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Chung KT (1983) The significance of azo-reducion in the mutagenesis and carcinogenesis of azo dyes. Mutat Res 114:269–281

    PubMed  CAS  Google Scholar 

  • DeLano WL (2003) PyMOL reference manual. DeLano Scientific LLC, San Carlos

    Google Scholar 

  • Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Biores Technol 98:2369–2385

    Article  CAS  Google Scholar 

  • Freigang J, Diederichs K, Schäfer KP, Welte W, Paul R (2002) Crystal structure of oxidized flavodoxin, an essential protein in Helicobacter pylori. Protein Sci 11:253–261

    Article  PubMed  CAS  Google Scholar 

  • Hanauer SB (1996) Inflammatory bowel disease. N Engl J Med 334:841–848

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Nakanishi M, Lee WC, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2006) Three-dimensional structure of AzoR from Escherichia coli. An oxidereductase conserved in microorganisms. J Biol Chem 281:20567–20576

    Article  PubMed  CAS  Google Scholar 

  • Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013

    Article  PubMed  CAS  Google Scholar 

  • Kobori T, Sasaki H, Lee WC, Zenno S, Saigo K, Murphy ME, Tanokura M (2001) Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution. J Biol Chem 276:2816–2823

    Article  PubMed  CAS  Google Scholar 

  • Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh H (2004) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279:34890–34897

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Zhou J, Lv H, Xiang X, Wang J, Zhou M, Qv Y (2007a) Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase. Appl Microbiol Biotechnol 76:1271–1279

    Article  PubMed  CAS  Google Scholar 

  • Liu ZJ, Chen H, Shaw N, Hopper SL, Chen L, Chen S, Cerniglia CE, Wang BC (2007b) Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 463:68–77

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi M, Yatome C, Ishida N, Kitade Y (2001) Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J Biol Chem 276:46394–46399

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DW II (1997) GeneDoc: analysis and visualization of genetic variation. EMBnet News 4:1–4

    Google Scholar 

  • Raffi F, Hall JD, Cerniglia CE (1997) Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem Toxicol 35:897–901

    Article  Google Scholar 

  • Reyes VM, Sawaya MR, Brown KA, Kraut J (1995) Isomorphous crystal structures of Escherichia coli dihydrofolate reductase complexed with folate, 5-deazafolate, and 5,10-dideazatetrahydrofolate: mechanistic implications. Biochemistry 34:2710–2723

    Article  PubMed  CAS  Google Scholar 

  • Shore J (1996) Advances in direct dyes. Ind J Fibre Text Res 21:1–29

    CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Yoda T, Ruhul A, Sugiura W (2001) Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. J Biol Chem 276:9059–9065

    Article  PubMed  CAS  Google Scholar 

  • Wang CJ, Hagemeier C, Rahman N, Lowe E, Noble M, Coughtrie M, Sim E, Westwood I (2007) Molecular cloning, characterization and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol 373:1213–1228

    Article  PubMed  CAS  Google Scholar 

  • Wilson DK, Bohren KM, Gabbay KH, Quiocho FA (1992) An unlikely sugar substrate site in the 1.65 Å structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 257:81–84

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Zhou J, Wang J, Du C, Hou H, Song Z, Bao Y (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol Lett 236:129–136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruofei Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Zhou, J., Wang, J. et al. Site-directed mutagenesis of substrate binding sites of azoreductase from Rhodobacter sphaeroides . Biotechnol Lett 30, 869–875 (2008). https://doi.org/10.1007/s10529-007-9627-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9627-8

Keywords

Navigation