Skip to main content

Advertisement

Log in

Polyhydroxybutyrate accumulation by a Serratia sp.

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A strain of Serratia sp. showed intracellular electron-transparent inclusion bodies when incubated in the presence of citrate and glycerol 2-phosphate without nitrogen source following pre-growth under carbon-limitation in continuous culture. About 1.3 mmol citrate were consumed per 450 mg biomass, giving a calculated yield of maximally 55% of stored material per g of biomass dry wt. The inclusion bodies were stained with Sudan Black and Nile Red (NR), suggesting a lipid material, which was confirmed as polyhydroxybutyrate (PHB) by analysis of molecular fragments by GC and by FTIR spectroscopy of isolated bio-PHB in comparison with reference material. Multi-parameter flow cytometry in conjunction with NR fluorescence, and electron microscopy, showed that not all cells contained heavy PHB bodies, suggesting the potential for increasing the overall yield. The economic attractiveness is enhanced by the co-production of nanoscale hydroxyapatite (HA), a possible high-value precursor for bone replacement materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alipui OD, Zhang D, Schulz H (2002) Direct hydration of 3-octynoyl-CoA by crotonase: a missing link in Konrad Bloch’s enzymatic studies with 3-alkynoyl thioesters. Biochem Biophys Res Commun 292:1171–1174

    Article  PubMed  CAS  Google Scholar 

  • Allan VJM (1999) The structure, formation and activity of a Citrobacter biofilm. Ph.D. Thesis, University of Birmingham, UK

  • Allman R, Hann AC, Manchess R, Lloyd D (1992) Characterisation of bacteria by multiparameter flow cytometry. J Appl Bacteriol 73:438–444

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role and industrial uses of bacterial poly hydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Badar U, Ahmed N, Beswick AJ, Pattanapipitpaisal P, Macaskie LE (2001) Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan. Biotechnol Lett 22:829–836

    Article  Google Scholar 

  • Battaile KP, Mohsen AWA, Vockley J (1996) Functional role of the active site glutamate-368 in rat short-chain acyl-CoA dehydrogenase. Biochemistry 35:15356–15363

    Article  PubMed  CAS  Google Scholar 

  • Becker DF, Fuchs JA, Banfield DK, Funk WD, MacGillivray RT, Stankovich MT (1993) Characterization of wild-type and an active-site mutant in Escherichia coli of short-chain acyl-CoA dehydrogenase from Megasphaera elsdenii. Biochem Eng J 32:10736–10742

    CAS  Google Scholar 

  • Binstock JF, Schulz H (1981) Fatty acid oxidation complex from Escherichia coli. Meth Enzymol 71:403–411

    PubMed  CAS  Google Scholar 

  • Blackwood AC, Neish AC, Ledingham GA (1956) Dissimilation of glucose at controlled pH values by pigmented and non-pigmented strains of Escherichia coli. J Bacteriol 72:497–499

    Article  PubMed  CAS  Google Scholar 

  • Boswell CD, Hewitt CJ, Macaskie LE (1998) An application of bacterial flow cytometry: evaluation of the toxic effects of four heavy metals on Acinetobacter sp. with potential for bioremediation of contaminated waste waters. Biotechnol Lett 20:857–863

    Article  CAS  Google Scholar 

  • Braunegg GB, Sonnleitner B, Lafferty RM (1998) A rapid GC method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol 6:29–37

    Article  Google Scholar 

  • Choi J, Lee SY (1997) Process analysis and economic evaluation for poly (3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17:355–342

    Article  Google Scholar 

  • Djordjevic S, Pace CP, Stankovich MT, Kim JJ (1995) Three-dimensional structure of butyryl-CoA dehydrogenase from Megasphaera elsdenii. Biochemistry 34:2163–2171

    Article  PubMed  CAS  Google Scholar 

  • Feigenbaum J, Schulz H (1975) Thiolases of Escherichia coli: purification and chain length specificities. J Bacteriol 122:407–411

    PubMed  CAS  Google Scholar 

  • Fiechter A (1990) Plastics from bacteria: poly (β-hydroxyalkanoates) as natural, biocompatible and biodegradable plastics. Springer Verlag, New York, pp 77–93

    Google Scholar 

  • Finlay JA, Allan VJM, Connor A, Callow ME, Basnakova G, Macaskie LE (1999) Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture. Biotechnol Bioeng 63:87–97

    Article  PubMed  CAS  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red, a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  PubMed  CAS  Google Scholar 

  • Hewitt CJ, Nebe-von-Caron G (2001a) The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv Biochem Eng Biotechnol 89:197–223

    Google Scholar 

  • Hewitt CJ, Nebe-von-Caron G (2001b). An industrial application of multi-parameter flow cytometry: assessment of cell physiological state and its application in the study of microbial fermentations. Cytometry 44:179–187

    Article  PubMed  CAS  Google Scholar 

  • Hoffmeister M, Piotrowski M, Nowitzki U, Martin W (2005) Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J Biol Chem 280:4329–4338

    Article  PubMed  CAS  Google Scholar 

  • Kingery WD, Bowen HK, Uhlman DR (1976) Introduction to ceramics, 2nd edn. John Wiley and Sons. Inc, USA

    Google Scholar 

  • Korolev S, Koroleva O, Petterson K, Gu M, Collart F, Dementieva I, Joachimiak A (2002) Autotracing of Escherichia coli acetate CoA-transferase alpha-subunit structure using 3.4 A MAD and 1.9 A native data. Acta Crystallogr D Biol Crystallogr 58:2116–2121

    Article  PubMed  CAS  Google Scholar 

  • Lewis G, Taylor IW, Nienow AW, Hewitt CJ (2004) The application of multi-parameter flow cytometry to the study of recombinant Escherichia coli batch fermentation processes. J Ind Microbiol Biotechnol 31:311–322

    PubMed  CAS  Google Scholar 

  • Lugg H (2005) A study of extracellular calcium phosphate biomineralisation and intracellular inclusion body formation by Serratia sp. N14. Ph.D. thesis, University of Birmingham, UK

  • Macaskie LE, Yong P, Paterson-Beedle M, Thackray AC, Marquis PM, Sammons RL, Nott KP, Hall LD (2005) A novel non line of-sight method for coating HA onto the surfaces of support materials by biomineralization. J Biotechnol 118:187–200

    Article  PubMed  CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates) from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    PubMed  CAS  Google Scholar 

  • Martinez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6:482–489

    Article  PubMed  CAS  Google Scholar 

  • Murray MGS, Wang J, Ponton CB, Marquis PM (1995) An improvement in the processing of hydroxyapatite ceramics. J Mater Sci 30:3061–3074

    Article  CAS  Google Scholar 

  • Moskowitz GJ, Merrick JM (1969) Metabolism of poly-β-hydroxybutyrate. II. Enzymatic synthesis of d-(−)-β-hydroxybutyryl coenzyme A by an enoyl hydratase from Rhodospirillum rubrum. Biochemistry 8:2748–2755

    Article  PubMed  CAS  Google Scholar 

  • Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol 3:18–24

    CAS  Google Scholar 

  • Park SJ, Lee SY (2003) Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 185:5391–5397

    Article  PubMed  CAS  Google Scholar 

  • Pawar S, Schulz H (1981) The structure of the multienzyme complex of fatty acid oxidation from Escherichia coli. J Biol Chem 256:3894–3899

    PubMed  CAS  Google Scholar 

  • Portalier R, Stoeber F (1982) d-Mannonate and d-altronate-NAD dehydrogenases from Escherichia coli. Meth Enzymol 89:210–218

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Nawath C, Someville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers in bacteria and plant. Biotechnology 13:142–150

    Article  PubMed  CAS  Google Scholar 

  • Rehm BHA (2003) Polyester synthesis: natural catalysts for plastics. Biochem J 376:15–33

    Article  PubMed  CAS  Google Scholar 

  • Robertson BR, Button DK, Koch AL (1998) Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry. Appl Environ Microbiol 64:3900–3909

    PubMed  CAS  Google Scholar 

  • Roig MG, Macaskie LE, Kennedy JF (1995) Biological rehabilitation of metal bearing wastewaters. Final Report EU Contract EV5V-CT93-0251

  • Sammons RL, Marquis PM, Macaskie LE, Yong P, Basner C (2004) Developments in the use of calcium phosphates as biomaterials. In: Valsami-Jones E (ed) Phosphorus in environmental technologies. IWA Publishing, pp 582–609

  • Sato M, Webster TJ (2000) Nanobiotechnology: implications for the future of nanotechnology in orthopaedic applications. Exp Rev Medical Devices 1:105–114

    Article  Google Scholar 

  • Steinbüchel A, Fuchtenbusch B (1998) Bacteria and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  PubMed  Google Scholar 

  • Thackray AC, Sammons RL, Macaskie LE, Yong P, Lugg H, Marquis PM (2004a) Bacterial biosynthesis of a calcium phosphate bone substitute material. J Mater Sci Mater Med 15:403–406

    Article  PubMed  CAS  Google Scholar 

  • Thackray AC, Yong P, Sammons RL, Lugg H, Macaskie LE, Marquis PM (2004b) Bacterial delivery of nanophase hydroxyapatite and tricalcium phosphate as a novel coating method for complex architectures. Eur Cells Mater 7:89–90

    Google Scholar 

  • Thorpe C, Kim JJ (1995) Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J 9:718–725

    PubMed  CAS  Google Scholar 

  • Webster TJ, Siegel RW, Bizios R (2000) Enhanced surface and mechanical properties of nanophase ceramics to achieve orthopaedic/dental implant efficacy. Bioceramics Key Eng Mater 192–195:321–324

    Google Scholar 

  • Webster TJ et al (2001) Nanoceramic surface roughness enhances osteoblast and osteoclast functions for improved orthopaedic/dental implant efficiency. Scripta Mater 44:1639–1642

    Article  CAS  Google Scholar 

  • Yong P, Macaskie LE, Sammons RL, Marquis PM (2004a) Synthesis of nanophase hydroxyapatite by a Serratia sp. from wastewater containing inorganic phosphate. Biotechnol Lett 26:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Yong P, Sammons RL, Marquis PM, Lugg H, Macaskie LE (2004b) Synthesis of nanophase hydroxyapatite by Serratia sp. N14. In: Tsezos M, Hatzikioseyian A, Remoundaki E (eds) Biohydrometallurgy: a sustainable technology in evolution. National Technical University of Athens, pp 1205–1214. ISBN 960-88415-0-X

Download references

Acknowledgements

We wish to thank BBSRC and EPSRC for grant support and studentships in support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Macaskie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lugg, H., Sammons, R.L., Marquis, P.M. et al. Polyhydroxybutyrate accumulation by a Serratia sp.. Biotechnol Lett 30, 481–491 (2008). https://doi.org/10.1007/s10529-007-9561-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9561-9

Keywords

Navigation