Skip to main content
Log in

Molecular identification and properties of a light-insensitive rice catalase-B expressed in E. coli

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Catalase plays a central role in plant stress responses but is highly susceptible to photoinhibition. A rice catalase-B protein avoiding photoinhibition was developed by mutagenesis of specific amino acids: Leu-189 to Trp-189 and His-225 to Thr-225 and then recombinantly expressed in E. coli. In addition, the site specific mutation also induced 2–2.5-fold increase in enzyme velocity with high affinity for its substrate and showed nearly a 3-fold lower K m than the wild protein. These characteristic of mutated rice catalase-B is highly promising in transgenic research to increase plant productivity under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Verlag Chemei, Weinheim, pp 273–285

    Google Scholar 

  • Bai Y, Zhang YL, Jin FG et al (2003) Recombinant Helicobacter pylori catalase. World J Gastroenterol 9:1119–1122

    PubMed  CAS  Google Scholar 

  • Brisson FL, Zelitch I, Havir AE (1998) Manipulation of catalase levels produces altered photosynthesis in transgenic tobacco plants. Plant Physiol 116:259–269

    Article  PubMed  CAS  Google Scholar 

  • Chamnongpol S, Willekens H, Langebartels C et al (1996) Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. Plant J 10:491–503

    Article  CAS  Google Scholar 

  • Cheng L, Kellogg EW III, Packer L (1981) Photoinactivation of catalase. Photochem Photobiol 34:125–129

    PubMed  CAS  Google Scholar 

  • Engel N, Schmidt M, Lutz C et al (2006) Molecular identification, heterologous expression and properties of light—insensitive plant catalase. Plant Cell Environ 29:593–607

    Article  PubMed  CAS  Google Scholar 

  • Feierabend J, Engel S (1986) Photoinactivation of catalase in vitro and in leaves. Arch Biochem Biophys 251:567–576

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Press, New York, pp 597–621

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisome and mitochondria. Physiol Planta 119:355–364

    Article  CAS  Google Scholar 

  • Higuchi R (1990) Recombinant PCR. In: Innis MA, Gelfand DH, Sninsky JJ et al (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 177–183

    Google Scholar 

  • Kono Y, Fridovich J (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    PubMed  CAS  Google Scholar 

  • Lilie H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E. coli. Curr Opin Biotech 9:497–501

    Article  PubMed  CAS  Google Scholar 

  • Margoliash E, Novogradsky A, Schejter A (1960) Irreversible reaction of 3-amino -1, 2, 3—trizole and related inhibitors with the protein of catalase. Biochem J 74:339–348

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Scandalios JG (1994) Regulation and properties of plant catalases. In: Foyer HCH, Mullineaux MPH (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 275–315

    Google Scholar 

  • Sekhar NP, Kavi KBP, Reddy AL et al (2006) In silico modeling and hydrogen peroxide binding study of rice catalase. In silico Biol 6:435–447

    PubMed  CAS  Google Scholar 

  • Sevinc MS, Mate MJ, Switala J, Fita I et al (1999) Role of the lateral channel in catalase HPII of Escherichia coli. Protein Sci 8:490–498

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Kobayashi K, Hayashi K (1984) The reaction of superoxide radical with catalase. Mechanism of the inhibition of catalase by superoxide radical. J Biol Chem 259:4414–4418

    PubMed  CAS  Google Scholar 

  • Switala J, Loewen PC (2002) Diversity of properties among catalases. Arc Biochem Biophys 401:145–154

    Article  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M et al (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Zamocky M, Koller F (1999) Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 72:19–66

    Article  PubMed  CAS  Google Scholar 

  • Zhoul Y, Lam MH, Zhang J (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot 58:1207–1217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to The Director, Institute of Life Sciences, Orissa, for support. MR gratefully acknowledges the UGC for financial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Ch. Sabat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, P., Ray, M., Kar, M. et al. Molecular identification and properties of a light-insensitive rice catalase-B expressed in E. coli . Biotechnol Lett 30, 563–568 (2008). https://doi.org/10.1007/s10529-007-9553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9553-9

Keywords

Navigation