Skip to main content
Log in

Cloning and functional expression in Saccharomyces cereviae of a K+ transporter, AlHAK, from the graminaceous halophyte, Aeluropus littoralis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

High-affinity K+ transporters play an important role in K+ absorption of plants. We isolated a HAK gene from Aeluropus littoralis, a graminaceous halophyte. The amino acid sequence of AlHAK showed high homology with HAK transporters obtained from Oryza sativa (82%) and Hordeum vulgare (82%). When expressed in Saccharomyces cereviae WΔ3, AlHAK performed high-affinity K+ uptake with a Km value of 8 μM, and the growth of transformants was dramatically inhibited by 150 mM Rb+ and 150 mM Cs+ but less affected by 300 mM Na+. AlHAK may thus improve the capacity of plants to maintain a high cytosolic K+/Na+ ratio at high salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angeles MM-C, Martínez V, Rubio F (2004) Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol 56:413–421

    Article  CAS  Google Scholar 

  • Bañuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed  Google Scholar 

  • Bañuelos MA, Madrid R, Rodríguez-Navarro A (2000) Individual functions of the HAK and TRK potassium transporters of Schwanniomyces occidentalis. Mol Microbiol 37(3):671–679

    Article  PubMed  Google Scholar 

  • Blanca G, Begona B, Alonso RN (2002) Molecular cloning and functional expression of potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa. Plant Mol Biol 50:623–633

    Article  Google Scholar 

  • Barhoumi Z, Djebali W, Smaoui A, Chabi W, Abdelly CV (2006) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol doi:10.1016/j.jplph.2006.05.008

  • Epstein E (1973) Mechanisms of ion transport through plant cell membranes. Int Rev Cytol 34:123–168

    Article  CAS  Google Scholar 

  • Fu HH, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73

    Article  PubMed  CAS  Google Scholar 

  • Haro R, Sainz L, Rubio F, Rodriguez-Navarro A (1999) Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31:511–520

    Article  PubMed  CAS  Google Scholar 

  • Ko CH, Gaber RF (1991) TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11:4266–4273

    PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1994) Mechanism of High-Affinity potassium uptake in roots of Arabidopsis thaliana. PNAS 91:9272–9276

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Physiol Plant 96:158–168

    Article  CAS  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • Ostrem JA, Olson SW, Schmitt JM, Bohnert HJ (1987) Salt stress increases the level of translatable mRNA for phosphoenolpyruvate carboxylase in Mesembryanthemum regenerates. Dev Biol 167:239–251

    Google Scholar 

  • Rubio F, Santa-Maria GE, Rodriguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43

    Article  CAS  Google Scholar 

  • Santa-Maria GE, Rubio F, Dubcovsky J, Rodgriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: Biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 23:441–471

    Article  PubMed  CAS  Google Scholar 

  • Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129:1482–1493

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Francisco Rubio from the Centro de Edafologíay Biología Aplicada del Segura-CSIC for providing the yeast strain, and we thank Dr. Jane Setlow and Dr. Xiao-Hong Yu from Brookhaven National Laboratory for proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Q., Feng, S., An, L. et al. Cloning and functional expression in Saccharomyces cereviae of a K+ transporter, AlHAK, from the graminaceous halophyte, Aeluropus littoralis . Biotechnol Lett 29, 1959–1963 (2007). https://doi.org/10.1007/s10529-007-9484-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9484-5

Keywords

Navigation