Skip to main content
Log in

Growth rate of a non-fermentative Escherichia coli strain is influenced by NAD+ regeneration

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

By complementing a non-fermentative Escherichia coli (ldhA pflB ) strain with the recombinant Zymomonas mobilis ethanol pathway (pdc, adhB), we evaluated the effect of different levels of enzymatic activity on growth rate demonstrating that there is a direct relationship between anaerobic growth rate and the total specific activity of pyruvate decarboxylase, which is the limiting enzyme of this specific fermentative NAD+ regenerating pathway. This relationship was proved to be useful to establish a selection strategy based on growth rate for the analysis of lctE libraries, which encode lactate dehydrogenase from Bacillus subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altaras NE, Cameron DC (2000) Enhanced production of (R)-1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol Prog 16:940–946

    Article  PubMed  CAS  Google Scholar 

  • Böck A, Sawers G (1996) Fermentation. In: Neidhardt FC, Curtiss RI, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schacchter M, Umbarger HE (eds) Escherichia coli and Salmonella cellular and Molecular biology. ASM, Washington, DC

    Google Scholar 

  • Boernke WE, Millard CS, Stevens PW, Kakar SN, Stevens FJ, Donnelly MI (1995) Stringency of substrate specificity of Escherichia coli malate dehydrogenase. Arch Biochem Biophys 322:43–52

    Article  PubMed  CAS  Google Scholar 

  • Bunch PK, Mat-Jan F, Lee N, Clark DP (1997) The IdhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology-(UK) 143:187–195

    Google Scholar 

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234

    Article  CAS  Google Scholar 

  • Conway T, Osman YA, Konnan JI, Hoffmann EM, Ingram LO (1987a) Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase. J Bacteriol 169:949–954

    PubMed  CAS  Google Scholar 

  • Conway T, Sewel GW, Osman YA, Ingram LO (1987b) Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J Bacteriol 169:2591–2597

    PubMed  CAS  Google Scholar 

  • Garmyn D, Ferain T, Bernard N, Hols P, Delcour J (1995) Cloning, nucleotide sequence, and transcriptional analysis of the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene. Appl Environ Microbiol 61:266–272

    PubMed  CAS  Google Scholar 

  • Hespell RB, Wyckoff H, Dien BS, Bothast RJ (1996) Stabilization of pet operon plasmids and ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate formate-lyase activities. Appl Environ Microbiol 62:4594–4597

    PubMed  CAS  Google Scholar 

  • Holmberg N, Ryde U, Bülow L (1999) Redesign of the coenzyme specificity in L-lactate dehydrogenase from Bacillus stearothermophilus using site-directed mutagenesis and media engineering. Protein Eng 12:851–856

    Article  PubMed  CAS  Google Scholar 

  • Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404

    PubMed  CAS  Google Scholar 

  • Lara AR, Vazquez-Limon C, Gosset G, Bolivar F, Lopez-Munguia A, Ramírez OT (2006) Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions. Biotechnol Bioeng 94:1164–1175

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, York SW, Yomano LP, Pineda VL, Davis FC, Shelton JC, Ingram LO (1999) Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli. Biotechnol Prog 15:891–897

    Article  PubMed  CAS  Google Scholar 

  • Mat-Jan F, Alam KY, Clark DP (1989) Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol 171:342–348

    PubMed  CAS  Google Scholar 

  • Merino E, Osuna J, Bolivar F, Soberon X (1992) A general, PCR-based method for single or combinatorial oligonucleotide-directed mutagenesis on pUC/M13 vectors. Biotechniques 12:508–510

    PubMed  CAS  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    PubMed  CAS  Google Scholar 

  • Romero S, Merino E, Bolivar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: Lactate dehydrogenase plays a key role in the fermentative metabolism. Appl Environ Microbiol (submitted)

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schar HP, Zuber H, Rossman MG (1982) Crystallization of lactate dehydrogenase from Bacillus stearothermophilus. J Mol Biol 154:349–353

    Article  PubMed  CAS  Google Scholar 

  • Stols L, Donnelly MI (1997) Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63:2695–2701

    PubMed  CAS  Google Scholar 

  • White D (1999) Fermentations. In: The physiology and biochemistry of prokaryotes. Oxford University Press, New York, pp 363–382

Download references

Acknowledgements

This work was supported by CONACYT grants 138498, 50952, MOR-2004-C02-048; SAGARPA-2004-C01-224, and DGAPA-UNAM. The authors thank Eugenio López and Jorge Yañez from “Unidad de Síntesis y Secuenciación” (Instituto de Biotecnología, UNAM), Dr. Humberto Flores for technical assistance in the LDH work and Fernando González for HPLC support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Osuna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez-Limón, C., Vega-Badillo, J., Martínez, A. et al. Growth rate of a non-fermentative Escherichia coli strain is influenced by NAD+ regeneration. Biotechnol Lett 29, 1857–1863 (2007). https://doi.org/10.1007/s10529-007-9481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9481-8

Keywords

Navigation