Skip to main content
Log in

RifP; a membrane protein involved in rifamycin export in Amycolatopsis mediterranei

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The rifamycin gene cluster in Amycolatopsis mediterranei includes the gene rifP, whose role in antibiotic production has not yet been established. In this work, the rifP gene was silenced and the results indicated that it codes for a protein to export rifamycin, avoiding its accumulation inside the cell. An antisense cassette was constructed by inserting the rifP gene in an antisense orientation downstream from the modified ermE* promoter, and upstream of the Tasd terminator (aspartate semialdehyde dehydrogenase of A. lactamdurans). Partial silencing of the rifP gene by the use of the antisense cassette, cloned in the plasmid pUAMAE5, resulted in a 70% decrease in the extracellular rifamycin B. A protein of 53 kDa was absent in the membrane fraction of the silenced strain. This is the same size of the expected product from the rifP gene. The 2D structure analysis indicated it belongs to a Drug:H+ antiporter family which includes a wide number of membrane transport proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • August P, Tang L, Ion Y, Ning S, Muller R, Yu T, Taylor M, Hoffmann D, Kim C, Zhang X, Hutchinson R, Floss H (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79

    Article  PubMed  CAS  Google Scholar 

  • Bibb MJ, Janssen GR, Ward JM (1985) Cloning and analysis of the promoter region of the erthromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 42:E357–E362

    Google Scholar 

  • Blanc V, Salah-bey K, Folcher M, Thompson CJ (1995) Molecular characterization and transcriptional analysis of a multidrug resistance gene cloned from the pristinamycin producing organism, Streptomyces pristinaespiralis. Mol Microbiol 17:989–999

    Article  PubMed  CAS  Google Scholar 

  • Caballero JL, Martínez E, Malpartida F, Hopwood DA (1991) Organization and functions of the actVA region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor. Mol Gen Genet 230:401–412

    Article  PubMed  CAS  Google Scholar 

  • Cho YH, Kim EJ, Chung HJ, Choi JH, Chater KF, Ahn BE, Shin JH, Roe JH (2003) The pqrAB operon is responsible for paraquat resistance in Streptomyces coelicolor. J Bacteriol 185:6756–6763

    Article  PubMed  CAS  Google Scholar 

  • Floss HG, Yu T-W (1999) Lessons from the rifamycin biosynthesis gene cluster. Curr Opin Chem Biol 3:592–597

    Article  PubMed  CAS  Google Scholar 

  • Folcher M, Morris R, Dale G, Salah-Bey-Hocini K, Viollier P, Thompson C (2001) A transcriptional regulator of a pristinamycin resistence gene in Streptomyces coelicolor. J Biol Chem 276(2):1479–1485

    Article  PubMed  CAS  Google Scholar 

  • Kumar C, Coque J, Martín JF (1994) Efficient transformation of the Cephamycin C producer Nocardia lactamdurans and development of shuttle and promoter-probe cloning vectors. Appl Environ Microbiol 60:4086–4093

    PubMed  CAS  Google Scholar 

  • Lee C, Kamitani Y, Nihira T, Yamada Y (1999) Identification and in vivo functional analysis of a virginiamycin S resistance gene (varS) from Streptomyces virginiae. J Bacteriol 181(10):3293–3297

    PubMed  CAS  Google Scholar 

  • Margalith P, Pagani H (1961) Rifomycin. XIV Production of rifamycin B. Appl Microbiol 9:325–333

    PubMed  CAS  Google Scholar 

  • Mejia A, Barrios-González J, Viniegra-González G (1998) Overproduction of rifamycin B by Amycolatopsis mediterranei and its relationship with the toxic effect of barbital on growth. J Antibiot 51:58–63

    PubMed  CAS  Google Scholar 

  • Mejia A, Viniegra-González G, Barrios-González J (2003) Biochemical Mechanism of the Effect of Barbital on Rifamycin B Biosynthesis by Amycolatopsis mediterranei: (M18 Strain). J Biosc Bioeng 95(3):288–292

    CAS  Google Scholar 

  • Moretti P, Hintermann G, Hutter R (1985) Isolation and characterization of an extrachromosomal element from Nocardia mediterranei. Plasmid (14):126–133

  • Putman M, Van Veen H, Konings W (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64(4):672–693

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225(2):487–494

    Article  Google Scholar 

  • Xu J, Eva W, Chag-Joon K, Floss HG, Mahmud T (2005) Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699. Microbiology 151:2515–2528

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Professor Heinz G. Floss (Department of Chemistry, University of Washington, Seattle U.S.A.) for providing A. mediterranei S699 strain. This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT, México.) (Grant SEP-2003-C02-44911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Mejía.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Absalón, A.E., Fernández, F.J., Olivares, P.X. et al. RifP; a membrane protein involved in rifamycin export in Amycolatopsis mediterranei . Biotechnol Lett 29, 951–958 (2007). https://doi.org/10.1007/s10529-007-9340-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9340-7

Keywords

Navigation