Skip to main content

Advertisement

Log in

Paenibacillus strain MP-1: a new source of mutanase

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A mutan-degrading bacterium, closely related to Paenibacillus curdlanolyticus, was isolated from soil. It produced 0.4 U mutanase ml−1 in 2 days in shake-flask cultures when bacterial mutan was the sole carbon source. Mutanase activity was optimal at pH 6.2 and 45°C over 1 h and was stable between pH 5.8 and 12 at 4°C for 24 h and up to 40°C for 1 h. Mutan produced by Streptococcus mutans was rapidly hydrolyzed by this enzyme. The hydrolysis of mutan (1 g l−1) resulted in 17% saccharification over 2 h and, at the same time, glucan was entirely solubilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chung J, Kim H-H, Shin J-H, Lee H-CH, Hee Lee Z, Oh J-S (2001) Identification of mutanase-producing Microbispora rosea from the soil of Chonnam Province. J Microbiol Biotechnol 11:677–684

    CAS  Google Scholar 

  • Clans D, Berkeley RCW (1986) Genus Bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1105–1140

    Google Scholar 

  • Ebisu S, Kato K, Kotani S, Misaki A (1975) Isolation and purification of Flavobacterium α-1,3-glucanase-hydrolyzing, insoluble, sticky glucan of Streptococcus mutans. J Bacteriol 124:1489–1501

    PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. University of Washington, Seattle

  • Imai K, Kobayashi M, Matsuda K (1977) Properties of an α-1,3-glucanase from Streptomyces sp. KI-8. Agric Biol Chem 41:1889–1895

    CAS  Google Scholar 

  • Inoue M, Egami T, Yokogawa K, Kotani H, Morioka H (1975) Isolation, identification and some cultural conditions of Streptomyces species that produce water-insoluble polyglucan hydrolase. Agric Biol Chem 39:1391–1400

    CAS  Google Scholar 

  • Lane DL (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Matsuda S, Kawanami Y, Takeda H, Ooi T, Kinoshita S (1997) Purification and properties of mutanase from Bacillus circulans. J Ferm Bioeng 83:593–595

    Article  CAS  Google Scholar 

  • Meyer MT, Phaff HJ (1980) Purification and properties of (1→3)-α-glucanases from Bacillus circulans WL-12. J Gen Microbiol 118:197–208

    CAS  Google Scholar 

  • Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156

    CAS  Google Scholar 

  • Rosan B, Lamont RJ (2000) Dental plaque formation. Microbes Infect 2:1599–1607

    Article  PubMed  CAS  Google Scholar 

  • Simonson LG, Gaugler RW, Lamberts BL, Reiher DA (1982) Purification and properties of endo-1,3-α-d-glucanase from Pseudomonas. Biochim Biophys Acta 715:189–195

    PubMed  CAS  Google Scholar 

  • Simonson LG, Lamberts BL (1983) Glucanohydrolases and the control of glucans. In: Doyle RJ, Ciardi JG (eds) Glucosyltransferases, glucans, sucrose and dental caries. IRL Press, Washington Oxford, pp 211–221

    Google Scholar 

  • Simonson LG, Lamberts BL, Reiher DA (1980) Production of α-1,3-glucanase by a new bacterial source (Pseudomonas). Microbios Lett 14:107–112

    CAS  Google Scholar 

  • Takahashi N, Satoh Y, Takamori K (1985) Subcellular localization of d-glucanases in Bacteroides oralis Ig4a. J Gen Microbiol 131:1077–1082

    PubMed  CAS  Google Scholar 

  • Takehara T, Inoue M, Morioka T, Yokogawa K (1981) Purification and properties of endo-α-1,3-glucanase from a Streptomyces chartreusis strain. J Bacteriol 145:729–735

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wiater A, Szczodrak J, Pleszczyńska M (2005) Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids. Acta Biol Hung 56:137–150

    Article  PubMed  CAS  Google Scholar 

  • Yano S, Yamamoto S, Toge T, Wakayama M, Tachiki T (2003) Occurrence of a specific protein in Basidiomycete-lytic enzyme preparation produced by Bacillus circulans KA-304 inductively with a cell-wall preparation of Schizophyllum commune. Biosci Biotech Biochem 67:1976–1982

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the BW/BS/BiNoZ/UMCS Research Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pleszczyńska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleszczyńska, M., Marek-Kozaczuk, M., Wiater, A. et al. Paenibacillus strain MP-1: a new source of mutanase. Biotechnol Lett 29, 755–759 (2007). https://doi.org/10.1007/s10529-007-9311-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9311-z

Keywords

Navigation