Skip to main content
Log in

Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Of 23 strains of halotolerant (up to 12% w/v NaCl) photosynthetic bacteria isolated from various sources, one isolate, SH5, accumulated intracellular 5-aminolevulinic acid (ALA) at 0.45 μg/g dry cell wt (DCW) growing aerobically in the dark. The strain was identified as Rhodobacter sphaeroides using 16S rDNA sequencing. Biosynthesis of ALA was enhanced to 14 μg/g DCW using modified glutamate/glucose (50 mM) medium with the addition of 10 mM levulinic acid after 24 h cultivation. Addition of 30 μM Fe2+ to this medium increased the yield to 226 μg/g DCW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Burnham BF, Lascelles J (1963) Control of porphyrin biosynthesis through a negative-feedback mechanism. Biochem J 87:462–472

    PubMed  CAS  Google Scholar 

  • Kamiyama H, Hotta Y, Tanaka T, Nishikawa S, Sasaki K (2000) Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic. J Biosci Bioeng 89:215–215

    Google Scholar 

  • Lascelles J (1978) Regulation of pyrole synthesis. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York

    Google Scholar 

  • Lee DH, Jun WJ, Kim KM, Shin DH, Cho HY, Hong BS (2003) Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using d-glucose. Enzyme Microbial Technol 32:27–34

    Article  CAS  Google Scholar 

  • McDevitt C, Burrell P, Blackall LL, McEwan AG (2000) Aerobic nitrate respiration in a nitrite-oxidizing bioreactor. FEMS Microbiol Lett 184:113–118

    Article  PubMed  CAS  Google Scholar 

  • Miyachi N, Tanaka T, Nishikawa Y, Hayashi M (1998) Preparation and chemical properties of 5-aminolevulinic acid and its derivative. Porphyrins 7:342–347

    Google Scholar 

  • Nishikawa S, Watanabe K, Tanaka T, Miyashi N, Murooka Y (1999) Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark condition. J Biosci Bioeng 87:798–804

    Article  PubMed  CAS  Google Scholar 

  • Okayama A, Fujii S, Miura R (1990) Optimized fluorometric determination of urinary δ-aminolevulinic acid by using pre-column derivatization and identification of the derivative. Clin Chem 36:1494–1497

    PubMed  CAS  Google Scholar 

  • Prasertsan P, Choorit W, Suwanno S (1993) Isolation, identification and growth condition of photosynthetic bacteria found in seafood processing wastewater. World J Micro Biotech 9:590–592

    Article  Google Scholar 

  • Sambrook J, Russell DW (eds) (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

  • Sasaki K, Ikeda S, Konishi T, Nishizawa Y, Hayashi M (1989) Influence of iron on the excretion of 5-aminolevulinic acid by a photosynthetic bacterium, Rhodobacter sphaeroides. J Ferment Bioeng 68:378–381

    Article  CAS  Google Scholar 

  • Sasaki K, Watanabe M, Nishio N (1997) Inhibition of 5-aminolevulinic acid (ALA) dehydratase by undissociated levulinic acid during ALA extracellular formation by Rhodobacter sphaeroides. Biotechnol Lett 19:421–424

    Article  CAS  Google Scholar 

  • Sasaki K, Watanabe M, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29

    Article  PubMed  CAS  Google Scholar 

  • Shemin D (1970) 5-Aminolevulinic acid dehydratase (Rhodopseudomonas sphaeroides). Methods Enzymol 17:205–211

    Article  CAS  Google Scholar 

  • Skoog DA, West DM, Holler FJ (eds) (1996) Fundamentals of analytical chemistry, 7th edn. Saunders College, New York

  • Smart JL, Willett JW, Bauer CE (2004) Regulation of hem gene expression in Rhodobacter capsulatus by redox and photosystem regulators RegA, CrtJ, FnrL, and AerR. J Mol Biol 342:1171–1186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to The Royal Golden Jubilee (RGJ) Ph.D. Program for the Scholarship (PHD/0087/2542) and Basic Research Grant (BGJ) under Thailand Research Fund (TRF) and Prince of Songkla University for financial support and thanks to Professor Dr. Horst W. Doelle for his valuable comments and corrections during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonsuk Prasertsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tangprasittipap, A., Prasertsan, P., Choorit, W. et al. Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides . Biotechnol Lett 29, 773–778 (2007). https://doi.org/10.1007/s10529-006-9303-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9303-4

Keywords

Navigation