Skip to main content
Log in

Fermentation kinetics including product and substrate inhibitions plus biomass death: a mathematical analysis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

We propose an analytical solution of the kinetic equations describing fermentations. Equations are solved in phase space, i.e. the biomass concentration is written explicitly as a function of the substrate concentration. These results hold even when cell death and an arbitrary number of substrate/product inhibitions are accounted for. Moreover, constant yield needs not be assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

K i :

Inhibition coefficient (g/l)

k i :

De-dimensionalized K i , k i  = K i /S 0 (−)

K D :

Cell death coefficient (g/l h)

m :

Maintenance coefficient (h−1)

n D :

Number of biomass death terms (–)

n I :

Number of inhibitions (–)

P i :

Product concentration (g/l)

p i :

De-dimensionalized P i , p = P i /(α i S 0 ) (–)

S :

Substrate concentration (g/l)

s :

Normalized substrate, s = 1 − S/S 0 (–)

t :

time (h)

X :

Viable biomass concentration (g/l)

x :

Normalized biomass, x = (X − X 0)(1 + ρ)/(YS 0) (–)

Y :

Biomass yield (–)

α i :

Stoichiometric coefficient for product P i (–)

κ :

De-dimensionalized K D , κ = mYK D /(αS 0) (–)

μ :

Maximum specific growth rate (h−1)

μ′ :

Change in μ due to inhibition (–)

ρ :

Ratio of time constants, ρ = m Y/μ (–)

σ i :

a root of \( \mu '\left( {1 - s} \right) + \rho \,k_1 \prod\nolimits_j {\left[ {1 + \left( {1 - s} \right)/k_j } \right]} \) (–)

φ i :

Defined in Eq. 11 (–)

ψ :

Distance to constant yield, ψ = k 1 ρ/(1 + ρ) (–)

0:

Initial value

References

  • Bailey JE, Ollis DF (1977) Biochemical engineering fundamentals. McGraw-Hill, New York

    Google Scholar 

  • Bazua CD, Wilke CR (1977) Ethanol effects on the kinetics of a continuous fermentation with Saccharomyces cerevisiae. Biotechnol Bioeng Symp 7:105–118

    PubMed  CAS  Google Scholar 

  • Caro I, Pérez L, Cantaro D (1991) Development of a kinetic model for the alcoholic fermentation of must. Biotechnol Bioeng 38:742–748

    Article  CAS  Google Scholar 

  • Colombié S, Malherbe S, Sablayrolles JM (2005) Modeling alcoholic fermentation in enological conditions: feasibility and interest. Am J Enol Vitic 56:238–245

    Google Scholar 

  • Cramer AC, Vlassides S, Block DE (2001) Kinetic model for nitrogen-limited wine fermentations. Biotechnol Bioeng 77:49–60

    Article  Google Scholar 

  • Ghose TK, Tyagi RD (1979) Rapid ethanol fermentation of cellulose hydrolysate. II. product and substrate inhibition and optimization of fermenter design. Biotechnol Bioeng 21:1401–1420

    Article  CAS  Google Scholar 

  • Hill GA, Robinson CW (1990) A modified Ghose model for batch cultures of Saccharomyces cerevisiae at high ethanol concentrations. Chem Eng J 44:B69–80

    Article  CAS  Google Scholar 

  • Hoppe GK, Hansford GS (1982) Ethanol inhibition of continuous anaerobic yeast growth. Biotechnol Lett 4:39–44

    Article  CAS  Google Scholar 

  • Maiorella BL, Blanch HW, Wilke CR (1983) By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 25:103–121

    Article  CAS  Google Scholar 

  • Marín R (1999) Alcoholic fermentation modelling: current state and perspectives. Am J Enol Vitic 50:166–178

    Google Scholar 

  • Mitchell DA, von Meien OF, Krieger N, Dalsenter FDH (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J 17:15–26

    Article  CAS  Google Scholar 

  • Monod J (1941) Recherche sur la croissance des cultures bactériennes. Hermann

  • Ough CS, Amerine MA (1963) Use of grape concentrate to produce sweet table wines. Am J Enol Vitic 14:194–204

    CAS  Google Scholar 

  • Thatipamala R, Rohani S, Hill GA (1992) Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng 40:289–297

    Article  CAS  Google Scholar 

  • Topiwala HH, Sinclair CG (1971) Temperature relationship in continuous culture. Biotechnol Bioeng 13:795–813

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Bouville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouville, M. Fermentation kinetics including product and substrate inhibitions plus biomass death: a mathematical analysis. Biotechnol Lett 29, 737–741 (2007). https://doi.org/10.1007/s10529-006-9296-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9296-z

Keywords

Navigation