Skip to main content
Log in

Hydrophobic interactions between the secondary structures on the molecular surface reinforce the alkaline stability of serine protease

  • Original Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

We employed random mutagenesis to determine the region of the initial unfolding of hyper-alkaline-sensitive subtilisin, ALP I, that precedes the denaturation of the entire protein under highly alkaline conditions. This region comprises two α-helices and a calcium-binding loop. Stabilization of the region caused the stabilization of the entire protein at a high alkaline pH 12. The alkaline stability of this region was most effectively improved by hydrophobic interactions, followed by ionic interactions with Arg residues. The effect of mutations on the improvement was different with regard to the alkaline stability and thermostability. This indicated that different strategies were necessary to improve the alkaline stability and thermostability of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold U, Schierhorn A, Ulbrich-Hofmann R (1999) Modification of the unfolding region in bovine pancreatic ribonuclease and its influence on the thermal stability and proteolytic fragmentation. Eur J Biochem 259:470–475

    Article  PubMed  CAS  Google Scholar 

  • Betzel C, Klupsch S, Papendorf G et’al (1992) Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution. J Mol Biol 223:427–445

    Article  PubMed  CAS  Google Scholar 

  • Bryan PN (2000) Protein engineering of subtilisin. Biochim Biophys Acta 1543:203–222

    PubMed  CAS  Google Scholar 

  • Chang S, Cohen SN (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 168:111–115

    Article  PubMed  CAS  Google Scholar 

  • Chou K-C, Howe WJ (2002) Prediction of the tertiary structure of the β-secretase zymogen. Biochem Biophys Res Commun 292:702–708

    Article  PubMed  CAS  Google Scholar 

  • Cunningham BC, Wells JA (1987) Improvement in the alkaline stability of subtilisin using an efficient random mutagenesis and screening procedure. Protein Eng 1:319–325

    Article  PubMed  CAS  Google Scholar 

  • Eijsink VG, Bjork A, Gaseidnes S et’al (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Mizutani O, Yamagata Y et’al (2001) Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin. J Biochem 129:675–682

    PubMed  CAS  Google Scholar 

  • Mansfeld J, Vriend G, van der Burg B et’al (1999) Probing the unfolding region in a thermolysin-like protease by site-specific immobilization. Biochemistry 38:8240–8245

    Article  PubMed  CAS  Google Scholar 

  • Makhatadze GI, Loladze VV, Ermolenko DN et’al (2003) Contribution of surface salt bridges to protein stability: guidelines for protein engineering. J Mol Biol 327:1135–1148

    Article  PubMed  CAS  Google Scholar 

  • Schellenberger A, Ulbrich R (1989) Protein stabilization by blocking the native unfolding nucleus. Biomed Biochim Acta 48:63–67

    PubMed  CAS  Google Scholar 

  • Shiraishi T, Suzuki A, Yamane T et’al (1997) High-resolution crystal structure of M-protease: phylogeny aided analysis of the high-alkaline adaptation mechanism. Protein Eng 10:627–634

    Article  Google Scholar 

  • Tange T, Taguchi S, Kojima S et’al (1994) Improvement of a useful enzyme (subtilisin BPN′) by an experimental evolution system. Appl Microbiol Biotechnol 41:239–244

    Article  PubMed  CAS  Google Scholar 

  • Yamagata Y, Ichishima E (1989) A new alkaline proteinase with pI 2.8 from alkalophilic Bacillus sp. Curr Microbiol 19:259–264

    Article  CAS  Google Scholar 

  • Yamagata Y, Isshiki K, Ichishima E (1995a) Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS. Enzyme Microb Technol 17:653–663

    Article  CAS  Google Scholar 

  • Yamagata Y, Maeda H, Nakajima T et’al (2002) The molecular surface of proteolytic enzymes has an important role in stability of the enzymatic activity in extraordinary environments. Eur J Biochem 269:4577–4585

    Article  PubMed  CAS  Google Scholar 

  • Yamagata Y, Sato T, Hanzawa S et’al (1995b) The structure of subtilisin ALP I from alkalophilic Bacillus sp. NKS-21. Curr Microbiol 30:201–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhei Yamagata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguchi, Y., Maeda, H., Abe, K. et al. Hydrophobic interactions between the secondary structures on the molecular surface reinforce the alkaline stability of serine protease. Biotechnol Lett 28, 1383–1391 (2006). https://doi.org/10.1007/s10529-006-9100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9100-0

Keywords

Navigation