Biotechnology Letters

, Volume 27, Issue 6, pp 435–442 | Cite as

Expression of a self-processing, pathogen resistance-enhancing gene construct in Arabidopsis

  • Haiying Liang
  • Hongyu Gao
  • Charles A. Maynard
  • William A. Powell
Article

Abstract

A gene cassette, p35S-CNO, was designed to express three gene products driven by a single constitutive CaMV 35S promoter. The individual coding regions were linked in frame to produce a single polyprotein, using spacer sequences encoding a specific heptapeptide cleavage recognition site (ENLYFQS) for the nuclear-inclusion-a (NIa) proteinase of tobacco etch virus (TEV). The protein coding sequences used were: a Trichoderma harzinum endochitinase, a truncated NIa proteinase of TEV, and a wheat oxalate oxidase. When p35S-CNO construct was tested in Arabidopsis thaliana, the polyprotein was properly cleaved after translation and the products exhibited functional enzymatic activity in vivo.

Keywords

antimicrobial proteins disease resistance gene pyramid plant transformation self-cleaving gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, RF, Dougherty, WG, Parks, TD, Willis, L, Johnston, RE, Kelly, M, Armstrong, FB 1985Biochemical analysis of the capsid protein gene and capsid protein of tobacco etch virus: N-terminal amino acids are located on the virion’s surfaceVirology.147309316CrossRefGoogle Scholar
  2. Berna, A, Bernier, F 1997Regulated expression of a wheat germin gene in tobacco: oxalate oxidase activity and apoplastic localization of the heterologous proteinPlant Mol. Biol.33417429CrossRefGoogle Scholar
  3. Bodman, SBV, Domier, LL, Farrand, SK 1995Expression of multiple eukaryotic genes from a single promoter in NicotianaBioTechnol.13587591CrossRefGoogle Scholar
  4. Carrington, JC, Dougherty, WG 1988A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processingProc. Natl. Acad. Sci. USA8533913395CrossRefGoogle Scholar
  5. Ceriani, MF, Marcos, JF, Hopp, HE, Beachy, RN 1998Simultaneous accumulation of multiple viral coat protein from a TEV-NIa based expression vectorPlant Mol. Biol.36239248CrossRefGoogle Scholar
  6. Dasgupta, S, Collins, GB, Hunt, AG 1998Co-ordinated expression of multiple enzymes in different subcellular compartments in plantsPlant J.16107116CrossRefGoogle Scholar
  7. Desfeux, C, Clough, SJ, Bent, AF 2000Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip methodPlant Physiol.123895904CrossRefGoogle Scholar
  8. Dumas, B, Freyssinet, G, Pallett, KE 1995Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlingsPlant Physiol.10710911096Google Scholar
  9. Halpin, C, Barakate, A, Askari, BM, Abbott, JC, Ryan, MD 2001Enabling technologies for manipulating multiple genes on complex pathwaysPlant Mol. Biol.47295310CrossRefGoogle Scholar
  10. Lane, BG 2002Oxalate, germins, and higher-plant pathogensLife536775Google Scholar
  11. Liang, H, Maynard, CA, Allen, RD, Powell, WA 2001Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase genePlant Mol. Biol.45619629CrossRefGoogle Scholar
  12. Liang, H, Catranis, CM, Maynard, CA, Powell, WA 2002Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptidesBiotechnol. Lett.24383389CrossRefGoogle Scholar
  13. Lorito, M 1998

    Chitinolytic enzymes and their genes

    Harmon, GEKubicek, CP eds. Treichoderma and GliocladiumTaylor and FrancisLondon7399
    Google Scholar
  14. Lorito, M, Woo, SL, Garcia, FI, Colucci, G, Harman, GE, Pintor-Toro, JA, Filippone, E, Muccifora, S, Lawrence, CB, Zoina, A 1998Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogensProc. Natl. Acad. Sci. USA.9578607865CrossRefGoogle Scholar
  15. Mentag, R, Luckevich, M, Morency, MJ, Seguin, A 2003Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1Tree Physiol.23405411Google Scholar
  16. Mora, AA, Earle, ED 2001Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase geneMol. Breed.819CrossRefGoogle Scholar
  17. Wit, PJG, Spikman, G 1982Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interjections of Cladosporium fulvum and tomato Resistance genes, leaf moldPhysiol. Plant Pathol.21111CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Haiying Liang
    • 1
  • Hongyu Gao
    • 2
  • Charles A. Maynard
    • 3
  • William A. Powell
    • 3
  1. 1.School of Forest ResourcesThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Iowa State UniversityAmesUSA
  3. 3.College of Environmental Science and ForestryState University of New YorkSyracuseUSA

Personalised recommendations