Skip to main content
Log in

Artificial Intelligence and Computational Biology in Gene Therapy: A Review

  • Review
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

One of the trending fields in almost all areas of science and technology is artificial intelligence. Computational biology and artificial intelligence can help gene therapy in many steps including: gene identification, gene editing, vector design, development of new macromolecules and modeling of gene delivery. There are various tools used by computational biology and artificial intelligence in this field, such as genomics, transcriptomic and proteomics data analysis, machine learning algorithms and molecular interaction studies. These tools can introduce new gene targets, novel vectors, optimized experiment conditions, predict the outcomes and suggest the best solutions to avoid undesired immune responses following gene therapy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadi S, Yan WX, Amar D, Mayrose I (2017) A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol 13(10):e1005807

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Khan JM, Haque S (2019) Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 160:61–75

    Article  CAS  PubMed  Google Scholar 

  • Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ (2020) A systematic review on supervised and unsupervised machine learning algorithms for data science. Superv Unsupervised Learn Data Sci. https://doi.org/10.1007/978-3-030-22475-2_1

    Article  Google Scholar 

  • Anthon C, Corsi GI, Gorodkin J (2022) CRISPRon/off: CRISPR/Cas9 on-and off-target gRNA design. Bioinformatics 38(24):5437–5439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrmann J, Etmann C, Boskamp T, Casadonte R, Kriegsmann J, Maaβ P (2018) Deep learning for tumor classification in imaging mass spectrometry. Bioinformatics 34(7):1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester R, Gabriels R, Van Den Bossche T, Martens L, Degroeve S (2020) The age of data-driven proteomics: how machine learning enables novel workflows. Proteomics 20(21–22):1900351

    Article  CAS  Google Scholar 

  • Cano-Gamez E, Trynka G (2020) From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front Genet 11:424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Carrion C, Carril M, Parak WJ (2017) Techniques for the experimental investigation of the protein corona. Curr Opin Biotechnol 46:106–113

    Article  CAS  PubMed  Google Scholar 

  • Charlier J, Nadon R, Makarenkov V (2021) Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing. Bioinformatics 37(16):2299–2307

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li Y, Narayan R, Subramanian A, Xie X (2016) Gene expression inference with deep learning. Bioinformatics 32(12):1832–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough E, Barrett T (2016) The gene expression omnibus database. Stat Genomics. https://doi.org/10.1007/978-1-4939-3578-9_5

  • Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13(5):619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danaeifar M (2023) Recent advances in gene therapy: genetic bullets to the root of the problem. Clin Exp Med 23(4):1107–1121

    Article  PubMed  Google Scholar 

  • Danaeifar M, Negahdari B, Eslam HM, Zare H, Ghanaat M, Koushali SS, Malekshahi ZV (2023) Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review. Biotechnol Lett 45(9):1053–72

    Article  CAS  PubMed  Google Scholar 

  • de Sainte Agathe J-M, Filser M, Isidor B, Besnard T, Gueguen P, Perrin A, Van Goethem C, Verebi C, Masingue M, Rendu J (2023) SpliceAI-visual: a free online tool to improve SpliceAI splicing variant interpretation. Hum Genomics 17(1):1–16

    Article  Google Scholar 

  • Desaire H, Go EP, Hua D (2022) Advances, obstacles, and opportunities for machine learning in proteomics. Cell Rep Phys Sci. https://doi.org/10.1016/j.xcrp.2022.101069

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan Y, Coreas R, Liu Y, Bitounis D, Zhang Z, Parviz D, Strano M, Demokritou P, Zhong W (2020) Prediction of protein corona on nanomaterials by machine learning using novel descriptors. NanoImpact 17:100207

    Article  Google Scholar 

  • Eitzinger S, Asif A, Watters KE, Iavarone AT, Knott GJ, Doudna JA, Minhas F (2020) Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Res 48(9):4698–4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escoffre J-M, Kaddur K, Rols M-P, Bouakaz A (2010) In vitro gene transfer by electrosonoporation. Ultrasound Med Biol 36(10):1746–1755

    Article  CAS  PubMed  Google Scholar 

  • Findlay MR, Freitas DN, Mobed-Miremadi M, Wheeler KE (2018) Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties. Environ Sci Nano 5(1):64–71

    Article  CAS  PubMed  Google Scholar 

  • Fine EJ, Cradick TJ, Zhao CL, Lin Y, Bao G (2014) An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Res 42(6):e42–e42

    Article  CAS  PubMed  Google Scholar 

  • Fong JH, Wong AS (2023) Advancing CRISPR/Cas gene editing with machine learning. Curr Opin Biomed Eng. https://doi.org/10.1016/j.cobme.2023.100477

    Article  Google Scholar 

  • Freeman EC, Weiland LM, Meng WS (2013) Modeling the proton sponge hypothesis: examining proton sponge effectiveness for enhancing intracellular gene delivery through multiscale modeling. J Biomater Sci Polym Ed 24(4):398–416

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Cai L, Zeng X, Zou Q (2020) StackCPPred: a stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency. Bioinformatics 36(10):3028–3034

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Shakoor A, Xie M, Chen S, Guan Z, Zhao L, Jiang Z, Sun D (2020) Precise automated intracellular delivery using a robotic cell microscope system with three-dimensional image reconstruction information. IEEE/ASME Trans Mechatron 25(6):2870–2881

    Article  Google Scholar 

  • Gkazi SA (2019) Quantifying CRISPR off-target effects. Emerg Topics Life Sci 3(3):327–334

    Article  CAS  Google Scholar 

  • Gong D, Ben-Akiva E, Singh A, Yamagata H, Est-Witte S, Shade JK, Trayanova NA, Green JJ (2022) Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery. Acta Biomater 154:349–358

    Article  CAS  PubMed  Google Scholar 

  • Han R, Ye Z, Zhang Y, Cheng Y, Zheng Y, Ouyang D (2023) Predicting liposome formulations by the integrated machine learning and molecular modeling approaches. Asian J Pharm Sci 18(3):100811

    Article  PubMed  PubMed Central  Google Scholar 

  • Handsaker RE, Van Doren V, Berman JR, Genovese G, Kashin S, Boettger LM, McCarroll SA (2015) Large multiallelic copy number variations in humans. Nat Genet 47(3):296–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison PW, Ahamed A, Aslam R, Alako BT, Burgin J, Buso N, Courtot M, Fan J, Gupta D, Haseeb M (2021) The European nucleotide archive in 2020. Nucleic Acids Res 49(D1):D82–D85

    Article  CAS  PubMed  Google Scholar 

  • Huang Q (2015) Genetic study of complex diseases in the post-GWAS era. J Genet Genomics 42(3):87–98

    Article  PubMed  Google Scholar 

  • Ichikawa DM, Abdin O, Alerasool N, Kogenaru M, Mueller AL, Wen H, Giganti DO, Goldberg GW, Adams S, Spencer JM (2023) A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat Biotechnol 41(8):1117–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kardani K, Milani A, H Shabani S, Bolhassani A (2019) Cell penetrating peptides: the potent multi-cargo intracellular carriers. Exp Opin Drug Deliv 16(11):1227–1258

    Article  CAS  Google Scholar 

  • Kardani K, Bolhassani A (2021) Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches. PLoS ONE 16(2):e0247396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz K, Shutov O, Lapoint R, Kimelman M, Brister JR, O’Sullivan C (2022) The sequence read archive: a decade more of explosive growth. Nucleic Acids Res 50(D1):D387–D390

    Article  CAS  PubMed  Google Scholar 

  • Khan SH (2019) Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther-Nucleic Acids 16:326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM (2020) Efficient polymer-mediated delivery of gene-editing ribonucleoprotein payloads through combinatorial design, parallelized experimentation, and machine learning. ACS Nano 14(12):17626–17639

    Article  CAS  PubMed  Google Scholar 

  • Kuusi O, Heinonen S (2022) Scenarios from artificial narrow intelligence to artificial general intelligence—Reviewing the results of the international work/technology 2050 study. World Futures Rev 14(1):65–79

    Article  Google Scholar 

  • Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 172(4):650–665

    Article  CAS  PubMed  Google Scholar 

  • Lazarovits J, Sindhwani S, Tavares AJ, Zhang Y, Song F, Audet J, Krieger JR, Syed AM, Stordy B, Chan WC (2019) Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano 13(7):8023–8034

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Stroberg W, Lee T-R, Kim HS, Man H, Ho D, Decuzzi P, Liu WK (2014) Multiscale modeling and uncertainty quantification in nanoparticle-mediated drug/gene delivery. Comput Mech 53:511–537

    Article  Google Scholar 

  • Li S, An J, Li Y, Zhu X, Zhao D, Wang L, Sun Y, Yang Y, Bi C, Zhang X (2022a) Automated high-throughput genome editing platform with an AI learning in situ prediction model. Nat Commun 13(1):7386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Xuan Y, Ghatak S, Guda PR, Roy S, Sen CK (2022b) Modeling the gene delivery process of the needle array-based tissue nanotransfection. Nano Res 15(4):3409–3421

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Fouad AD, Bowlin PD, Fan Y, He S, Chang M-C, Du A, Teng C, Kassouni A, Ji H (2023) A robotic system for automated genetic manipulation and analysis of Caenorhabditis elegans. PNAS Nexus 2(7):pgad197

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin J, Wong K-C (2018) Off-target predictions in CRISPR-Cas9 gene editing using deep learning. Bioinformatics 34(17):i656–i663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Zhang Z, Zhang S, Chen J, Wong KC (2020) CRISPR-net: a recurrent convolutional network quantifies CRISPR off-target activities with mismatches and Indels. Adv Sci 7(13):1903562

    Article  CAS  Google Scholar 

  • Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV (2018) An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173(2):400-416.e411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Cheng X, Liu G, Li B, Liu X (2020) Deep learning improves the ability of sgRNA off-target propensity prediction. BMC Bioinformatics 21(1):1–15

    Article  Google Scholar 

  • Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. PLoS Comput Biol 13(5):e1005457

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39(7):906–913

    Article  CAS  PubMed  Google Scholar 

  • Marques AD, Kummer M, Kondratov O, Banerjee A, Moskalenko O, Zolotukhin S (2021) Applying machine learning to predict viral assembly for adeno-associated virus capsid libraries. Mole Ther-Methods Clin Dev 20:276–286

    Article  CAS  Google Scholar 

  • Marques C, Hajipour MJ, Marets C, Oudot A, Safavi-Sohi R, Guillemin M, Borchard G, Jordan O, Saviot L, Maurizi L (2023) Identification of the proteins determining the blood circulation time of nanoparticles. ACS Nano 17(13):12458–12470

    Article  CAS  PubMed  Google Scholar 

  • Mikalef P, Gupta M (2021) Artificial intelligence capability: conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information Manag 58(3):103434

    Article  Google Scholar 

  • Nademi Y, Tang T, Uludağ H (2021) Modeling uptake of polyethylenimine/short interfering RNA nanoparticles in breast cancer cells using machine learning. Adv NanoBiomed Res 1(10):2000106

    Article  CAS  Google Scholar 

  • Nan Z, Xu Q, Zhang Y, Ge W (2019) Force-sensing robotic microinjection system for automated multi-cell injection with consistent quality. IEEE Access 7:55543–55553

    Article  Google Scholar 

  • Niu R, Peng J, Zhang Z, Shang X (2021) R-CRISPR: a deep learning network to predict off-target activities with mismatch, insertion and deletion in CRISPR-Cas9 system. Genes 12(12):1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noor Z, Ahn SB, Baker MS, Ranganathan S, Mohamedali A (2021) Mass spectrometry–based protein identification in proteomics—a review. Brief Bioinform 22(2):1620–1638

    Article  CAS  PubMed  Google Scholar 

  • Okoro PC, Schubert R, Guo X, Johnson WC, Rotter JI, Hoeschele I, Liu Y, Im HK, Luke A, Dugas LR (2021) Transcriptome prediction performance across machine learning models and diverse ancestries. Hum Genetics Genomics Adv. https://doi.org/10.1016/j.xhgg.2020.100019

    Article  Google Scholar 

  • Papanikolaou E, Bosio A (2021) The promise and the hope of gene therapy. Front Genome Editing 3:618346

    Article  Google Scholar 

  • Patino CA, Mukherjee P, Lemaitre V, Pathak N, Espinosa HD (2021) Deep learning and computer vision strategies for automated gene editing with a single-cell electroporation platform. SLAS Technol: Trans Life Sci Innovation 26(1):26–36

    Article  CAS  Google Scholar 

  • Pawluk A, Bondy-Denomy J, Cheung VH, Maxwell KL, Davidson AR (2014) A new group of phage anti-CRISPR genes inhibits the type IE CRISPR-cas system of Pseudomonas aeruginosa. Mbio 5(2):e00896

    Article  PubMed  PubMed Central  Google Scholar 

  • Pederzoli F, Tosi G, Vandelli MA, Belletti D, Forni F, Ruozi B (2017) Protein corona and nanoparticles: how can we investigate on? Wiley Interdiscip Rev: Nanomed Nanobiotechnol 9(6):e1467

    Google Scholar 

  • Pei G, Chen L, Zhang W (2017) WGCNA application to proteomic and metabolomic data analysis. Methods in enzymology, vol 585. Elsevier, Amsterdam, pp 135–158

    Google Scholar 

  • Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 48(D1):D845–D855

    PubMed  Google Scholar 

  • Piperno A, Sciortino MT, Giusto E, Montesi M, Panseri S, Scala A (2021) Recent advances and challenges in gene delivery mediated by polyester-based nanoparticles. Int J Nanomed. https://doi.org/10.2147/IJN.S321329

    Article  Google Scholar 

  • Rajoub B (2020) Supervised and unsupervised learning. Biomedical signal processing and artificial intelligence in healthcare. Elsevier, Amsterdam, pp 51–89

    Chapter  Google Scholar 

  • Rashid RA, Ankathil R (2020) Gene therapy: an updated overview on the promising success stories. Malays J Pathol 42(2):171–185

    CAS  PubMed  Google Scholar 

  • Rau A, Marot G, Jaffrézic F (2014) Differential meta-analysis of RNA-seq data from multiple studies. BMC Bioinformatics 15:1–10

    Article  Google Scholar 

  • Reich D, Price AL, Patterson N (2008) Principal component analysis of genetic data. Nat Genet 40(5):491–492

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez P, Bautista MA, Gonzalez J, Escalera S (2018) Beyond one-hot encoding: lower dimensional target embedding. Image Vis Comput 75:21–31

    Article  Google Scholar 

  • Schwarzer A, Talbot SR, Selich A, Morgan M, Schott JW, Dittrich-Breiholz O, Bastone AL, Weigel B, Ha TC, Dziadek V (2021) Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning. Mol Ther 29(12):3383–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby LI, Cortez-Jugo CM, Such GK, Johnston AP (2017) Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 9(5):e1452

    Google Scholar 

  • Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V (2023) Using traditional machine learning and deep learning methods for on-and off-target prediction in CRISPR/Cas9: a review. Briefings Bioinform 24(3):bbad131

    Article  Google Scholar 

  • Singh R, Lanchantin J, Robins G, Qi Y (2016) DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinform 32(17):i639–i648

    Article  CAS  Google Scholar 

  • Su R, Hu J, Zou Q, Manavalan B, Wei L (2020) Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief Bioinform 21(2):408–420

    Article  PubMed  Google Scholar 

  • Subramanian I, Verma S, Kumar S, Jere A, Anamika K (2020) Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights 14:1177932219899051

    Article  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(D1):D447–D452

    Article  CAS  PubMed  Google Scholar 

  • Tang B, Pan Z, Yin K, Khateeb A (2019) Recent advances of deep learning in bioinformatics and computational biology. Front Genet 10:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Veiga N, Diesendruck Y, Peer D (2023) Targeted nanomedicine: lessons learned and future directions. J Control Release 355:446–457

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  PubMed  Google Scholar 

  • Wang D, Tai PW, Gao G (2019a) Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 18(5):358–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Zhang C, Wang B, Li B, Wang Q, Liu D, Wang H, Zhou Y, Shi L, Lan F (2019b) Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nat Commun 10(1):4284

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Liu C, Wang Y, Koivisto O, Zhou J, Shu Y, Zhang H (2021) Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev 176:113891

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lin L, Qiao L (2021) Deep learning approaches for data-independent acquisition proteomics. Expert Rev Proteomics 18(12):1031–1043

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Li X, Lin Q, Wong K-C (2019) Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications. Bioinformatics 35(7):1108–1115

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-R, Jiang Z-R (2022) Effective use of sequence information to predict CRISPR-Cas9 off-target. Comput Struct Biotechnol J 20:650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG (2018) Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet 50(8):1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinn E, Pacouret S, Khaychuk V, Turunen HT, Carvalho LS, Andres-Mateos E, Shah S, Shelke R, Maurer AC, Plovie E (2015) In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep 12(6):1056–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zu H, Gao D (2021) Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J 23(4):78

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, literature review, resources, acquisition, writing, editing and drawing the pic carried out by M.D. Conceptualization, supervision, methodology, revision and final editing performed by A.N.

Corresponding author

Correspondence to Ali Najafi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danaeifar, M., Najafi, A. Artificial Intelligence and Computational Biology in Gene Therapy: A Review. Biochem Genet (2024). https://doi.org/10.1007/s10528-024-10799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-024-10799-1

Keywords

Navigation